首页> 外文OA文献 >Application of support vector machine and neural network modeling in the prediction of concentration of dispersed phase outlet in rotating disc contactor (RDC) column
【2h】

Application of support vector machine and neural network modeling in the prediction of concentration of dispersed phase outlet in rotating disc contactor (RDC) column

机译:支持向量机和神经网络建模在旋转圆盘接触器(RDC)柱分散相出口浓度预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Liquid-liquid extraction is one of the most important separation processes that widely used in industries. Rotating Disc Contactor (RDC) column is one of the liquidliquid extractor. Therefore, the study of liquid-liquid extraction in RDC column has become a very important subject to be discussed not just among the chemical engineers but mathematician as well. This project presents Support Vector Machine (SVM) and Neural Network modeling in the prediction of concentration of dispersed phase outlet in RDC column. SVM is an exciting Machine Learning technique that learns by example to sign labels to object and can be used for regression as well as classification purpose, while Neural Network is widely used as effective approach for handling nonlinear data especially in situations where the physical processes are not fully understood. Both modeling systems offer the potential for a more flexible and less error in forecasting. Thus, it can help to save time and reducing cost in conducting experiments. A Statistica software is utilized to help with the SVM modeling and a Matlab code is produced to run the Neural Network simulation in this project. The mean square error is calculated to compare the result between the two models. The analysis shows that both SVM and Neural Network modeling can predict the concentration of dispersed phase in RDC column but the SVM approach gives better result than the Neural Network approach.
机译:液液萃取是工业上最广泛使用的最重要的分离方法之一。旋转圆盘接触器(RDC)柱是液液萃取器之一。因此,在RDC色谱柱中进行液-液萃取的研究已成为一个非常重要的课题,不仅是化学工程师,而且是数学家。该项目提出了支持向量机(SVM)和神经网络建模,用于预测RDC色谱柱中分散相出口的浓度。 SVM是一种令人兴奋的机器学习技术,它通过示例进行学习以在对象上签名,并且可以用于回归和分类目的,而神经网络被广泛用作处理非线性数据的有效方法,尤其是在物理过程不多的情况下。完全了解。两种建模系统都可以提供更灵活,更少错误的预测。因此,它可以帮助节省时间并降低进行实验的成本。利用Statistica软件帮助进行SVM建模,并生成Matlab代码以在该项目中运行神经网络仿真。计算均方误差以比较两个模型之间的结果。分析表明,SVM和神经网络建模均可以预测RDC色谱柱中分散相的浓度,但SVM方法比神经网络方法具有更好的结果。

著录项

  • 作者

    Azmi Ezzatul Farhain;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号