首页> 外文期刊>Chemical Engineering Science >Modeling and dynamic analysis of a rotating disc contactor (RDC) extraction column using one primary and one secondary particle method (OPOSPM)
【24h】

Modeling and dynamic analysis of a rotating disc contactor (RDC) extraction column using one primary and one secondary particle method (OPOSPM)

机译:使用一种初级粒子和一种次级粒子方法(OPOSPM)对转盘接触器(RDC)萃取塔进行建模和动态分析

获取原文
获取原文并翻译 | 示例
       

摘要

Modeling and dynamic analysis of liquid extraction columns are essential for the design, control strategies and understanding of column behavior during start up and shutdown. Because of the discrete character of the dispersed phase, the population balance modeling framework is needed. Due to the mathematical complexity of the full population balance model, it is still not feasible for dynamic and online control purposes. In this work, a reduced mathematical model is developed by applying the concept of the primary and secondary particle method (Attarakih et al., 2009b, Solution of the population balance equation using the one primary and one secondary particle method (OPOSPM), Computer Aided Chemical Engineering, vol. 26, pp. 1333-1338). The method is extended to solve the nonhomogenous bivariate population balance equation, which describes the coupled hydrodynamics and mass transfer in an RDC extraction column. The model uses only one primary and one secondary particles, which can be considered as Lagrangian fluid particles carrying information about the distribution as it evolves in space and time. This information includes averaged quantities such as total number, volume and solute concentrations, which are tracked directly through a system of coupled hyperbolic conservation laws with nonlinear source terms. The model describes droplet breakage, coalescence and interphase solute transfer. Rigorous hyperbolic analysis of OPOSPM uncovered the existence of four waves traveling along the column height. Three of these are contact waves, which carry volume and solute concentration information. The dynamic analysis in this paper reveals that the dominant time constant is due to solute concentration in the continuous phase. On the other hand, the response of the dispersed phase mean properties is relatively faster than the solute concentration in the continuous phase. Special shock capturing method based on the upwind scheme with flux vector splitting is used, with explicit wave speeds, as a time-space solver. The model shows a good match between analytical and numerical results for special steady state and dynamic cases as well as the published steady state experimental data.
机译:液体萃取塔的建模和动态分析对于启动和关闭过程中的设计,控制策略以及对塔行为的理解至关重要。由于分散相的离散性,因此需要人口平衡建模框架。由于完整人口平衡模型的数学复杂性,对于动态和在线控制而言,它仍然不可行。在这项工作中,通过应用一次和二次粒子方法的概念,开发了简化的数学模型(Attarakih等人,2009b,使用一次和一次粒子方法(OPOSPM)解决人口平衡方程,计算机辅助化学工程,第26卷,第1333-1338页)。扩展了该方法以求解非均质双变量总体平衡方程,该方程描述了RDC萃取塔中的流体动力学和传质耦合。该模型仅使用一个初级粒子和一个次级粒子,可以将其视为拉格朗日流体粒子,其中包含有关随时间和空间变化的分布的信息。此信息包括平均数量,例如总数,体积和溶质浓度,可通过带有非线性源项的双曲守恒定律耦合系统直接跟踪。该模型描述了液滴破裂,聚结和相间溶质转移。 OPOSPM的严格双曲分析发现存在沿柱高传播的四个波。其中三个是接触波,它们携带体积和溶质浓度信息。本文的动力学分析表明,主要时间常数是由于连续相中的溶质浓度所致。另一方面,分散相平均性能的响应比连续相中的溶质浓度相对更快。时空求解器使用基于逆风方案的通量矢量分裂的特殊激振捕获方法,具有明显的波速。该模型显示出针对特殊稳态和动态情况的分析结果与数值结果以及已发布的稳态实验数据之间的良好匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号