首页> 外文OA文献 >Speaker identification using distributed vector quantization and Gaussian mixture models
【2h】

Speaker identification using distributed vector quantization and Gaussian mixture models

机译:使用分布式矢量量化和高斯混合模型的说话人识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Speaker identification is the computing task of recognizing people's identity based on their voices. There are two main difficulties in this field. First is how to maintain the accuracy rate under large amount of training data. Second is how to reduce the processing time. Previous studies reported that Gaussian Mixture Model (GMM) for speaker identification appears to have many advantages. However, due to long processing time, this process does not always produce satisfying result in practice. Meanwhile, current mechanisms for hybrid production of speaker identification are directed more towards accuracy problems, not processing time optimization. This research focuses on constructing distributed data training on Vector Quantization (VQ) modeling to achieve an initial result. The decision tree approach is applied to obtain distributed training for VQ model. GMM classification process is then employed on the initial result to achieve a final result. The efficiency of the model is evaluated by computational time and accuracy rate compared to GMM baseline models. Experimental result shows that the hybrid distributed VQ/GMM model yields better accuracy. Besides, it gives 80% reduction in processing time and is 5 times faster compared to GMM baseline models. In conclusion, this research successfully improves the computational time and accuracy of the text-independent speaker identification system.
机译:说话者识别是根据人们的声音识别人们身份的计算任务。该领域有两个主要困难。首先是在大量训练数据下如何保持准确率。其次是如何减少处理时间。先前的研究报道,用于说话人识别的高斯混合模型(GMM)似乎具有许多优势。然而,由于处理时间长,该方法在实践中并不总是产生令人满意的结果。同时,当前用于混合生成说话人识别的机制更多地针对准确性问题,而不是处理时间优化。这项研究的重点是构建基于矢量量化(VQ)建模的分布式数据培训,以取得初步成果。决策树方法用于获得VQ模型的分布式训练。然后,对初始结果采用GMM分类过程以达到最终结果。通过与GMM基线模型相比的计算时间和准确率评估模型的效率。实验结果表明,混合分布式VQ / GMM模型具有较高的精度。此外,与GMM基准模型相比,它可以将处理时间减少80%,并且快5倍。总之,这项研究成功地提高了独立于文本的说话人识别系统的计算时间和准确性。

著录项

  • 作者

    Loh Mun Yee;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号