首页> 外文OA文献 >Collaborative-based decision making for web service composition using service level agreement negotiation and crowdsourcing
【2h】

Collaborative-based decision making for web service composition using service level agreement negotiation and crowdsourcing

机译:使用服务水平协议协商和众包的基于协作的Web服务组合决策

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quality of Service (QoS)-aware Web Service Composition as complex problem solver has become one of the most highlighted issues in service computing area. It maps to multi-objective optimization problem that is classified as Nondeterministic Polynomial-time hard (NP-hard) problem. The diversity of subjective and potentially dishonest evaluations impose an obstacle to QoS-aware service assessment. The vague preferences of users have also to be considered in multi-criteria service selection. Last but not least, the budget-constrained service negotiation needs to make trade-off between the desired QoS metrics and the imposed budget constraints by service users. There is a large body of research covering aforementioned different aspects of service composition. This research tries to open a new horizon for service composition to utilize collaborative decision support systems. The proposed system involves three phases, namely Trust-Aware Crowd-enabled consensus-based Service Assessment (TACSA), Fuzzy inference-based multi-criteria Service Ranking (FASER), and Pareto-optimal service composition (PALEN). In the first phase, TACSA is responsible to assess all candidate services with respect to the required QoS metrics and guarantee this assessment not to suffer from subjective and dishonest evaluations by means of the collaborative decision making. The incurred complexity in capturing users’ preferences and objectives is the second obstacle to rank services. FASER, the fuzzy inference engine, is then used to capture user preferences and support multi-criteria QoS-based service ranking. After that, the composer is required to negotiate with ranked service providers and select the best-possible candidate service based on users’ QoS desires and constraints. PALEN enables composer to achieve this aim using the autonomous service level agreement negotiation strategy and surplus management. The focus of the proposed negotiation strategy is restricted to the time-dependent tactic that can handle the deadline imposed by users. Besides, a novel approach proposed to dynamically adjust time-dependent function parameter based on service demand and utilization, and redistribute surplus to optimize the composite service. The research promises to select the best candidate services that maximizes QoS metrics while adheres to users’ budget constraints. The extensive experimental results along with simulated scenarios demonstrate the applicability and effectiveness of the proposed approach. It is interesting to note that the consensus on assessed QoS metrics is achieved with respect to different parameters and the crowd converge to the most trustworthy service assessment. Moreover, the results indicate that the composition optimality is averagely increased by almost 80% considering different composition scenarios.
机译:支持服务质量(QoS)的Web服务组合作为复杂的问题解决者,已成为服务计算领域中最突出的问题之一。它映射到多目标优化问题,该问题被分类为非确定性多项式时间困难(NP-hard)问题。主观和潜在的不诚实评估的多样性给QoS感知服务评估带来了障碍。在多准则服务选择中还必须考虑用户的含糊偏好。最后但并非最不重要的一点是,预算受限的服务协商需要在所需的QoS指标和服务用户施加的预算约束之间进行权衡。有大量的研究涉及服务组成的上述不同方面。这项研究试图为服务组合利用协作决策支持系统开辟新的视野。拟议的系统涉及三个阶段,即基于信任感知人群的基于共识的服务评估(TACSA),基于模糊推理的多准则服务排名(FASER)和帕累托最优服务组合(PALEN)。在第一阶段,TACSA负责评估有关所需QoS指标的所有候选服务,并通过协作决策确保此评估不会遭受主观和不诚实的评估。捕获用户的偏好和目标所引起的复杂性是对服务进行排名的第二个障碍。然后使用模糊推理引擎FASER捕获用户偏好并支持基于多标准QoS的服务排名。之后,要求作曲家与排名较高的服务提供商进行协商,并根据用户的QoS需求和约束条件选择最可能的候选服务。 PALEN使作曲家能够使用自主服务水平协议协商策略和剩余管理来实现此目标。拟议的谈判策略的重点仅限于可以处理用户施加的截止时间的随时间变化的策略。此外,提出了一种新的方法,可以根据服务需求和利用情况动态调整时间相关的功能参数,并重新分配剩余以优化组合服务。这项研究承诺选择最佳的候选服务,以在满足用户预算限制的同时最大化QoS指标。广泛的实验结果以及模拟场景证明了该方法的适用性和有效性。有趣的是,已针对不同的参数达成了关于评估的QoS指标的共识,并且人群收敛到了最可信赖的服务评估。此外,结果表明,考虑到不同的构图方案,构图优化度平均提高了近80%。

著录项

  • 作者

    Sharifi Mahdi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号