首页> 外文OA文献 >Automated brain lesion classification method for diffusion-weighted magnetic resonance images
【2h】

Automated brain lesion classification method for diffusion-weighted magnetic resonance images

机译:扩散加权磁共振图像的脑损伤自动分类方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diffusion-weighted magnetic resonance imaging plays an increasingly important role in the diagnosis of several brain diseases by providing detailed information regarding lesion based on the diffusion of water molecules in brain tissue. Conventionally, the differential diagnosis of brain lesions is performed visually by professional neuroradiologists during a highly subjective, time consuming process. Within this context, this study proposes a new technique for automatically detecting and classifying major brain lesions of four types: acute stroke, chronic stroke, tumor and necrosis. An analytical framework of the brain lesions consists of four stages which are pre-processing, segmentation, features extraction and classification. For segmentation process, adaptive thres holding, gray level co-occurrence matrix, region splitting and merging, semi-automatic region growing, automatic region growing and fuzzy C-means were proposed to segment the lesion region. The algorithm performance was then evaluated using Jaccard index, Dice index, and both false positive and false negative rates. Results demonstrated that automatic region growing offered the best performance for lesion segmentation while acute stroke gave the highest rate with 0.838 Dice index. Next, statistical features were extracted from the region of interest and fed into the rule based classifier designed to the best suit to the lesion’s features. The performance of the classifier was evaluated based on overall accuracy, sensitivity and specificity. The overall accuracy for the classification was 81.3%. In conclusion, the proposed automated brain lesion classification method has the potential to diagnose and classify major brain lesions
机译:通过基于脑组织中水分子的扩散提供有关病变的详细信息,扩散加权磁共振成像在几种脑部疾病的诊断中起着越来越重要的作用。通常,在高度主观的,耗时的过程中,由专业的神经放射科医生目视进行脑损伤的鉴别诊断。在此背景下,这项研究提出了一种自动检测和分类四种主要脑部病变的新技术:急性中风,慢性中风,肿瘤和坏死。脑损伤的分析框架包括四个阶段,即预处理,分割,特征提取和分类。在分割过程中,提出了自适应阈值保持,灰度共生矩阵,区域分割与合并,半自动区域增长,自动区域增长和模糊C-均值分割的方法。然后使用Jaccard索引,Dice索引以及假阳性率和假阴性率来评估算法性能。结果表明,自动区域生长提供最佳的病变分割性能,而急性中风以0.838 Dice指数获得最高的分割率。接下来,从目标区域提取统计特征,并将其输入最适合病变特征的基于规则的分类器中。基于总体准确性,敏感性和特异性评估了分类器的性能。分类的总体准确性为81.3%。总之,提出的自动脑部病变分类方法具有诊断和分类主要脑部病变的潜力

著录项

  • 作者

    Mohd. Saad Norhashimah;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号