首页> 外文OA文献 >Solving two-dimensional groundwater flow equation using alternating direction implicit method
【2h】

Solving two-dimensional groundwater flow equation using alternating direction implicit method

机译:交替方向隐式求解二维地下水渗流方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Groundwater model can be described as a mathematical model and the equation of groundwater is governed by partial differential equation. In order to solve the groundwater flow equation, numerical method such that Finite Difference Method (FDM) is used. In this research, a two-dimensional transient groundwater flow equation for a confined, nonleaky, and homogeneous with mixed boundary conditions is solved using Alternating Direction Implicit (ADI) method where ADI method is one of the FDM. The algorithm of ADI method has been developed for three different types of boundary conditions that is Dirichlet condition, Neuman condition and Mixed condition. The transient groundwater flow equation has been derived and was solved using ADI method by Matlab software. Then, the results obtained were compared to analytical solution. Since the solutions from numerical method provide the small error when compared to the analytical solutions, it therefore can be concluded that ADI method provides good approximations in solving two-dimensional groundwater transient flow problem.
机译:地下水模型可以描述为数学模型,地下水方程由偏微分方程控制。为了求解地下水流方程,使用了数值方法,例如有限差分法(FDM)。在这项研究中,使用交替方向隐式(ADI)方法(其中ADI方法是FDM之一)求解了具有混合边界条件的密闭,非泄漏和均质的二维瞬态地下水流方程。针对三种不同的边界条件,即狄利克雷条件,诺伊曼条件和混合条件,开发了ADI方法的算法。推导了地下水瞬态流动方程,并通过Matlab软件的ADI方法对其进行了求解。然后,将获得的结果与分析溶液进行比较。由于与解析方法相比,数值方法的解决方案误差较小,因此可以得出结论,ADI方法可以很好地解决二维地下水瞬态流动问题。

著录项

  • 作者

    Ahmad Nordin Norain;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号