首页> 外文OA文献 >Iterative process to improve simple adaptive subdivision surfaces method for triangular meshes
【2h】

Iterative process to improve simple adaptive subdivision surfaces method for triangular meshes

机译:改进三角网格简单自适应细分曲面方法的迭代过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Subdivision surface is a refinement method applied to the entire polygon mesh in order to produce a smooth surface in any 3D object. This method has issues in terms of time and memory consumption due to the fact that it computes and renders all of the vertices of the mesh during the subdivision process. To overcome this issue, adaptive subdivision surface method is used because it would subdivide only at the required vertices of selected areas and decrease the number of polygons on the mesh. However, a related issue in the use of this method has risen,which is the determination of a suitable threshold value to be used for selecting the subdivision area. Besides that, the use of a higher level of subdivision will lead to an increase in the number of polygons and this would lead to heavy computational load and raise high undulation on the curve surface. To address these issues, Iterative Adaptive Subdivision Surface (IteAS) method is proposed. In this method, the area to be subdivided will be identified by using the threshold value. To get the optimal threshold value, a new formula based on statistical evaluation was embedded in the proposed method. Here, the threshold value is defined as the average value of a normal vector between the rates of 0° to 180° in a 3D object. The value will be compared with the angle between normal vectors, if the threshold value is greater than the angle, the surface will be subdivided by using Butterfly subdivision scheme. The results from this process will determine the number and levels of iteratives in the subdivision surface. The number of iteratives relieson the surface shape of the 3D object which is either a curve or flat surface. The number of iteratives will be higher for a flat surface as compared to a curve surface.In this research, IteAS can reduce 18% to 25% number of polygons as well as 1% to 3% use of computational memory whilst retaining the smoothness of the surface. This IteAS method has been proven to improve the present enhancement process.
机译:细分表面是一种应用于整个多边形网格的细化方法,目的是在任何3D对象中生成平滑表面。由于该方法在细分过程中会计算并渲染网格的所有顶点,因此在时间和内存消耗方面存在问题。为了克服这个问题,使用了自适应细分曲面方法,因为它只会细分选定区域的所需顶点,并减少网格上的多边形数量。但是,在使用该方法时出现了一个相关的问题,那就是确定用于选择细分区域的合适阈值。除此之外,使用更高级别的细分将导致多边形数量增加,这将导致沉重的计算负担并增加曲面上的高起伏。为了解决这些问题,提出了迭代自适应细分曲面(IteAS)方法。在该方法中,将通过使用阈值来识别要细分的区域。为了获得最佳阈值,该方法嵌入了基于统计评估的新公式。在此,将阈值定义为3D对象中的0°至180°的比率之间的法线向量的平均值。将该值与法向矢量之间的角度进行比较,如果阈值大于该角度,则将使用Butterfly细分方案对曲面进行细分。该过程的结果将确定细分表面中迭代的数量和级别。迭代的次数取决于3D对象的表面形状,该表面形状可以是曲面或平面。与曲线曲面相比,平面曲面的迭代次数会更高。在这项研究中,IteAS可以减少18%至25%的多边形数量以及1%至3%的计算内存使用量,同时保持平滑度表面。该IteAS方法已被证明可以改善当前的增强过程。

著录项

  • 作者

    Husain Noor Asma;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号