首页> 外文OA文献 >EEG-based emotion classification using wavelet based features and support vector machine classifier
【2h】

EEG-based emotion classification using wavelet based features and support vector machine classifier

机译:使用基于小波的特征和支持向量机分类器的基于EEG的情感分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As technology and the understanding of emotions are evolving, there are numerous opportunities for classification of emotion due to the high demand in the psychophysiological research. The researches need an efficient mechanism to recognise the various emotions precisely with less computation complexity. The current methods available are too complex with higher computational time. This study proposes a classification of human emotion using electroencephalogram signals (EEG). The study utilised electroencephalogram signals (EEG) to classify emotions which is positive/negative arousal, valence and normal emotions. Electroencephalogram signals (EEG) are analysed from 4 different participants from the dataset that acquire from the public data source. These dataset go through several processes before the derivation of the features such as preprocessing using band pass filtering and artifacts removals, segmentation of the signals and Multiwavelet Transform (MWT) analysis of the processed data. The signals are decomposed up to level 3 decomposition and detail coefficients are used for features extraction. Statistical and power spectral density (PSD) features are computed and feed into the classifiers. Simple classification methods Support Vector Machine (SVM) is used to classify the emotion and their performances are evaluated. The experimental results report that statistical features and Support Vector Machine (SVM) achieved better accuracy up to 75.8%, 72.3% and 74.0% for arousal, valence and normal class respectively. In conclusion this research suggests the use of Multiwavelet Analysis for future work on recognizing various emotions from the Electroencephalogram signals (EEG).
机译:随着技术和对情感的理解的发展,由于心理生理学研究的高要求,存在许多分类情感的机会。这些研究需要一种有效的机制来以更少的计算复杂度精确地识别各种情绪。当前可用的方法过于复杂且计算时间较长。这项研究提出了使用脑电图信号(EEG)对人类情感进行分类的方法。这项研究利用脑电图信号(EEG)对情绪进行分类,这些情绪包括正/负唤醒,化合价和正常情绪。从从公共数据源获取的数据集中,从4个不同的参与者分析脑电图信号(EEG)。这些数据集在推导特征之前经历了多个过程,例如使用带通滤波和伪像去除进行预处理,信号分割以及对处理后的数据进行多小波变换(MWT)分析。信号被分解到3级分解,细节系数用于特征提取。统计和功率谱密度(PSD)功能将被计算并输入到分类器中。简单的分类方法使用支持向量机(SVM)对情绪进行分类,并评估其表现。实验结果表明,统计功能和支持向量机(SVM)的唤醒,效价和正常类别的准确率分别达到75.8%,72.3%和74.0%。总之,这项研究建议在未来的工作中使用多小波分析来从脑电图信号(EEG)识别各种情绪。

著录项

  • 作者

    M. Razali Normasliza;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号