首页> 外文OA文献 >Anomaly network intrusion detection method in network security based on principle component analysis
【2h】

Anomaly network intrusion detection method in network security based on principle component analysis

机译:基于主成分分析的网络安全异常网络入侵检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most current intrusion detection methods cannot process large amounts of audit data for real-time operation. In this paper, anomaly network intrusion detection method based on Principle Component Analysis (PCA) for data reduction and classifier in presented. Each network connection is transformed into an input data vector. Moreover, PCA is applied to reduce the high dimensional data vectors and distance between a vector, and its projection onto the subspace. Based on the preliminary analysis using a set of benchmark data from KDD (Knowledge Discovery and Data Mining) Competition designed by DARPA, PCA demonstrates the ability to reduce huge dimensional data into a lower dimensional subspace without losing important information. This finding can be used to further enhance the detection accuracy in detecting new types of intrusion by taking PCA as the preprocessing requirement in reducing high dimensional data.
机译:当前大多数入侵检测方法无法处理大量审核数据以进行实时操作。提出了一种基于主成分分析(PCA)的异常网络入侵检测方法,用于数据约简和分类。每个网络连接都转换为输入数据向量。此外,PCA用于减少高维数据向量和向量之间的距离,以及向量在子空间上的投影。基于使用由DARPA设计的KDD(知识发现和数据挖掘)竞赛中的一组基准数据进行的初步分析,PCA展示了在不丢失重要信息的情况下将大量维数据缩减为低维子空间的能力。通过将PCA作为减少高维数据的预处理要求,该发现可用于进一步提高检测新型入侵的检测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号