首页> 外文OA文献 >Adaptive intelligent grid scheduling system
【2h】

Adaptive intelligent grid scheduling system

机译:自适应智能电网调度系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Grid technologies are established to share the large-scale heterogeneous resources over multiple administrative domains for processing the application. In these technologies, the grid scheduling problem is crucial that must be solved in order to achieve multiple objectives within different stakeholders (end-users, owner resources and administrators) preferences. The aim of this research is to design and implement the Adaptive Intelligent Grid Scheduling System (AIGSS) in order to achieve multiple objectives named Makespan Time, Grid Efficiency and Total delayed jobs. The popular meta-heuristic algorithms, namely Ant Colony Optimization (ACO) and Tabu Search (TS) algorithms are proposed and developed to maintain the selecting appropriate grid resource to execute each job within the different job inter-arrival times and grid resources. Additionally, the clustering technique named Fuzzy C-Means (FCM) algorithm is proposed for clustering the groups of grid resources as well as jobs based on the degree of characteristic similarity. Moreover, a popular discrete event simulation tool, namely, GridSim toolkit and Alea simulation, is extended by developing the service modules on top of it. Therefore, the experiment is simulated as realistic grid environment in order to measure the proposed system. The experimental results show that the AIGSS provides reasonable multiple objectives to stakeholders within different job interarrival times and machines in grid system. In addition to the experimental results, the proposed system performs better than the other algorithms for different goals of each stakeholder. The performance of AIGSS is compared with the common and heuristic algorithms such as First-Come-First-Serve (FCFS) with Optimization, Earliest Deadline First (EDF), Minimum Tardiness Earliest Due Date (MTEDD), Minimum Completion Time (MCT), Opportunistic Load Balancing (OLB), MIN-MIN, Hill Climbing, EASY Backfilling, Simulated Annealing (SA), and Tabu Searching (TS).
机译:建立网格技术是为了在多个管理域上共享大规模异构资源以处理应用程序。在这些技术中,网格调度问题至关重要,必须解决该问题才能在不同的利益相关者(最终用户,所有者资源和管理员)首选项内实现多个目标。这项研究的目的是设计和实现自适应智能电网调度系统(AIGSS),以实现多个目标,分别为Makespan时间,电网效率和总延迟工作。提出并开发了流行的元启发式算法,即蚁群优化(ACO)和禁忌搜索(TS)算法,以维持选择合适的网格资源以在不同的作业到达时间和网格资源内执行每个作业。此外,基于特征相似度,提出了一种称为模糊C-均值(FCM)算法的聚类技术,用于对网格资源和作业进行聚类。而且,流行的离散事件模拟工具,即GridSim工具箱和Alea模拟,通过在其之上开发服务模块而得到扩展。因此,将实验模拟为现实的网格环境,以测量所提出的系统。实验结果表明,AIGSS为不同的工作间隔时间和网格系统中的机器提供了合理的多个目标。除了实验结果外,对于每个利益相关者的不同目标,所提出的系统的性能均优于其他算法。将AIGSS的性能与常见的启发式算法进行比较,例如具有优化功能的“先来先服务(FCFS)”,“最晚截止时间(EDF)”,“最迟延误最早到期日(MTEDD)”,“最短完成时间(MCT)”,机会负载平衡(OLB),最小-最小,爬坡,简易回填,模拟退火(SA)和禁忌搜索(TS)。

著录项

  • 作者

    Lorpunmanee Siriluck;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号