首页> 外文OA文献 >The use thermophilic organisms for the recovery of gold and copper from low grade ores
【2h】

The use thermophilic organisms for the recovery of gold and copper from low grade ores

机译:利用嗜热生物从低品位矿石中回收金和铜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biooxidation studies were carried out on gold ores isolated from Jugan and Pejiru, Sarawak. The gold and arsenic contents of the Pejiru and Jugan ores are 29.4 ppm, 48.7% and 13.5 ppm and 58.29% respectively. Due to its high concentration of gold, the Pejiru ore was then subjected to biooxidation studies using L.ferrooxidans, A.ferrooxidans, mesophilic local isolate, S.thermosulfidiooxidans, A.brierleyi and thermophilic local isolates (5B and C cultures). Significant gold recoveries (39.5, 76.09 and 68.16%) were obtained using L.ferrooxidans, S.thermosulfidiooxidans and A.brierleyi respectively. Low gold recoveries from other strains used could be due to arsenic toxicity. Fe(III) pretreatment of the ores was carried out to study its effectiveness in dissolution of arsenic from the ores. The optimized parameters for Fe(III) leaching is as follow; 0.2 M Fe2(SO4)3, 45°C, pulp density 10% and a stirring speed of 200 rpm. Indeed higher amounts of gold (73.59, 76.49 and 80.4%) were recovered after biooxidation of Fe(III) leached ore using L.ferrooxidans , S.thermosulfidiooxidans and A.brierleyi. Abandoned or disused mines posses an environmental problem because of the possibility of heavy metals presents to be leached out into groundwater or natural river system. This issue needs to be addressed because of the toxicity effects that might affect humans. A possible solution is the use of bioleaching technology to treat the low-grade ores, which are normally left idle. For this study, ores from the disused Sungai Lembing mine in Pahang was subjected to ferric leaching and bioleaching using mesophilic and thermophilic bacteria namely A. ferrooxidans, A. thiooxidans, L. ferrooxidans and S. thermosulfidooxidans respectively. Optimization of ferric leaching was carried out using Fe2(SO4)3 and FeCl3 at concentrations ranging from 0.2 to 1.0 M. The results of the experiment showed that FeCl3 1M was the best solution for the ferric leached of copper with 86.70% Cu leached. The otherwise, result from bioleaching experiment showed that A.ferrooxidans was the highest among the others bacteria with 77.05% Cu was extracted. Parameters optimized during the bioleaching process include Eh, temperature and Cu and Fe solubilization. The copper from the bioleached ores will be recovered using solvent extraction and stripping process. With the increasing need of using semiconductor in this millennium, the disposal of printed circuit board has received much attention from the viewpoints of environmental protection and resource utilization. In this research both bioleaching and chemical leaching process for the recovery of copper in printed circuit board sample and sludge sample of the semiconductor solid wastes were attempted. The copper contents of the printed circuit board and sludge sample are 23.17% and 4.89%. In the bioleaching process, mesophilic bacteria; T.ferrooxidans, L.ferrooxidans, T.thiooxidans and moderate thermophilic/thermophilic; S.thermosulfidiooxidans and A.brierlyi were used. Chemical leaching involves the use of oxidizing agents such as ferric chloride, ferric sulphate, acetic acid, sodium thiosulphate and sodium hypochlorite. In bioleaching of the sludge sample, high copper recoveries were obtained using T.thiooxidans (5.58%) while for printed circuit board sample high recoveries were obtained using L.ferrooxidans (60.84%). Copper in printed circuit board sample and sludge sample were efficiently recovered by ferric chloride leaching (93.30%) and sodium thiosulphate leaching (15.30%) respectively. The gold mining industry is an exhaustive process whereby large amounts of ore have to be processed to extract the metal. Also, limitations of the techniques used in gold processing leads to the incomplete recoveries of gold, which normally ends up in the tailings. In this study, biooxidation using mixed cultures consisting of Thiobacillus thiooxidans (TT), Thiobacillus ferrooxidans (TF), Leptospirillum ferrooxidans (LF) and Caldibacillus ferrivorus (CF) was carried out in a Continuous Stirred Tank Reactor (CSTR) to recover gold from mines tailings. Biooxidation studies were first conducted using shake flasks, where a mixed culture consisting of TT, TF, LF and CF at a ratio of 3:1:1:3 was found to decrease the percentage of preg-robbing by a factor of 3 compared to the control. Biooxidation was also carried out in a bioreactor using the batch and continuous modes. Results from the batch experiments show that the solubilisation of iron for the 3:1:1:3 (TT: TF: LF: CF) cultures is 0.52 times higher than the 1:1:1:1 (TT: TF: LF: CF) cultures and 1.08 times higher than the control. For the continuous mode, the best iron solubilisation was obtained under the following operating conditions i.e. temperature, 38oC; stirring speed, 350 rpm; pulp density, 15%; bacterial ratio, 3:1:1:3 (TT: TF: LF: CF); pH, 2.00 and 3 days residence time. There was also a great reduction in the heavy metal content of the tailings after biooxidation i.e. 83.02% Fe, 53.09% Cd, 65.00% Cu, 30.16%Pb and 54.72% Zn were solubilised from the tailings. The recovery of gold from the biooxidation process was then carried out using cyanide. The highest gold recovery (>95%) was achieved under the following set of conditions; 30% pulp density, 1000-ppm cyanide and with aeration. However, the amounts of gold recovered after electrorefining process was low i.e. 46.71%.
机译:对从砂拉越的Jugan和Pejiru分离的金矿石进行了生物氧化研究。 Pejiru和Jugan矿石的金和砷含量分别为29.4 ppm,48.7%和13.5 ppm和58.29%。由于其高浓度的金,然后对Pejiru矿石进行了生物氧化研究,使用了L.ferrooxidans,A.ferrooxidans,嗜温局部分离株,S.thermosulfidiooxidans,A.brierleyi和嗜热局部分离株(5B和C培养物)。分别使用氧化亚铁L.,氧化亚铁S.thermosulfidiooxidans和A.brierleyi获得了显着的金回收率(39.5、76.09和68.16%)。从其他使用的菌株中回收的金很低,可能是由于砷的毒性。进行了铁(III)矿石预处理,以研究其从矿石中溶解砷的有效性。 Fe(III)浸出的优化参数如下: 0.2 M Fe2(SO4)3,45℃,纸浆密度10%,搅拌速度200 rpm。的确,在使用三氧化二铁,S.thermosulfidiooxidans和A.brierleyi对Fe(III)浸出的矿石进行生物氧化后,可以回收到更高量的金(73.59、76.49和80.4%)。废弃或废弃的矿山会带来环境问题,因为重金属可能会浸出到地下水或天然河流系统中。由于可能影响人类的毒性作用,因此需要解决此问题。一种可能的解决方案是使用生物浸出技术来处理通常闲置的低品位矿石。在这项研究中,彭亨州废弃的Sungai Lembing矿中的矿石分别使用嗜温和嗜热细菌分别进行了铁浸出和生物浸出,这两种细菌分别是A. ferrooxidans,A。thiooxidans,L。ferrooxidans和S. thermosulfidooxidans。用Fe2(SO4)3和FeCl3在0.2到1.0M的浓度范围内对铁的浸出进行了优化。实验结果表明,FeCl3 1M是铜浸出含86.70%Cu的铁的最佳溶液。否则,从生物浸出实验的结果表明,在其他细菌中,最高提取率是A.ferrooxidans,含77.05%Cu。在生物浸出过程中优化的参数包括Eh,温度以及Cu和Fe溶解。来自生物浸出矿石的铜将使用溶剂萃取和汽提工艺进行回收。在这个千年中,随着对使用半导体的需求的增加,从环境保护和资源利用的角度来看,印刷电路板的处理已引起了很多关注。在这项研究中,尝试了生物浸提和化学浸提工艺来回收印刷电路板样品和半导体固体废物的污泥样品中的铜。印刷电路板和污泥样品中的铜含量分别为23.17%和4.89%。在生物浸出过程中,嗜温细菌; T.ferrooxidans,L.ferrooxidans,T.thiooxidans和中等嗜热/嗜热性;使用了S.thermosulfidiooxidans和A.brierlyi。化学浸出涉及使用氧化剂,例如氯化铁,硫酸铁,乙酸,硫代硫酸钠和次氯酸钠。在污泥样品的生物浸出中,使用硫代氧化三硫(5.58%)获得了高铜回收率,而对于印刷电路板样品,使用了三氧化二铁(60.84%)获得了高回收率。分别通过氯化铁浸出(93.30%)和硫代硫酸钠浸出(15.30%)有效地回收了印刷电路板样品和污泥样品中的铜。黄金开采业是一个详尽的过程,因此必须加工大量矿石才能提取金属。同样,金加工中所用技术的局限性导致金的回收不完全,通常最终会在尾矿中回收。在这项研究中,在连续搅拌釜反应器(CSTR)中使用硫代硫杆菌(TT),铁氧化硫杆菌(TF),铁氧化钩端螺旋体(LF)和铁歧杆菌(CF)组成的混合培养物进行生物氧化。尾矿。首先使用摇瓶进行生物氧化研究,发现混合比例为3:1:1:3的TT,TF,LF和CF组成的混合培养物将抢劫的百分率降低了3倍。控制。还使用间歇和连续模式在生物反应器中进行生物氧化。批处理实验的结果表明,3:1:1:3(TT:TF:LF:CF)培养物中铁的溶解度比1:1:1:1(TT:TF:LF :)高0.52倍CF)培养,比对照高1.08倍。对于连续模式,在以下操作条件下,即38°C的温度下,铁的溶解度最佳。搅拌速度:350rpm;纸浆密度15%;细菌比例为3:1:1:3(TT:TF:LF:CF); pH值,停留时间为2.00和3天。生物氧化后,尾矿中的重金属含量也大大降低,即从尾矿中溶解了83.02%的Fe,53.09%的Cd,65.00%的Cu,30.16%的Pb和54.72%的Zn。然后使用氰化物从生物氧化过程中回收金。在以下条件下,金回收率最高(> 95%);纸浆密度为30%,氰化物含量为1000-ppm,并带有曝气。但是,电精制后回收的金量较低,即46.71%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号