首页> 外文学位 >Issues affecting heap biooxidation of low-grade refractory gold ore: Formation of secondary sulfates, ore lithology, alteration and sulfide mineralogy at Gold Quarry, Carlin, Nevada.
【24h】

Issues affecting heap biooxidation of low-grade refractory gold ore: Formation of secondary sulfates, ore lithology, alteration and sulfide mineralogy at Gold Quarry, Carlin, Nevada.

机译:影响低品位难处理金矿石堆生物氧化的问题:在内华达州卡林市金矿场的二次硫酸盐的形成,矿石岩性,蚀变和硫化物矿物学。

获取原文
获取原文并翻译 | 示例

摘要

The Gold Quarry mine is located in the Maggie Creek District in the northern section of the southern half of the Carlin Trend, 11 km north of the town of Carlin, Eureka County, Nevada. The primary metal of interest is gold. The majority of the ore is sulfidic-refractory consisting primarily of homogenously distributed extremely small gold particles, generally ranging in size from colloidal to approximately 50A, hosted primarily as a solid solution within the structural lattice of arsenian pyrite rims which surround some pre-ore pyrite crystals (Arehart et al., 1993). Arsenian pyrite is also commonly found as discrete fine-grain disseminated crystals or in local fine-grain masses or clouds.;High-grade sulfidic refractory ore is processed via roasting methods where as, the low-grade ore cannot be economically processed through the roaster and is instead oxidized by a cost mediated biological heap method on three nominal 800,000 ton pads. The oxidized low-grade ore is then utilized as supplementary mill feed.;Recycling of the biooxidation fluid over time has resulted in a solution highly saturated in sulfate and various metals of which iron and aluminum are the largest contributors to sulfate formation. Consequently, local areas within the heap pad that experience dehydration may experience substantial secondary hydrous sulfate mineral accumulations. These sulfate mineral accumulations locally reduce permeability and may channel the oxidizing solution and induced airflow as well as limiting diffusion within the aggregate itself resulting zones of reduced oxidation and therefore reduced gold recovery. A significant percentage of the heap, visually estimated during visits to unloading pads in 2005 and 2006 at 25 to 30%, was locally isolated from a balanced biosolution and air flow mix due to channelization or the formation of overlying sulfate umbrellas and was consequently only minimally oxidized.;There are many complex factors affecting the efficiency and effectiveness of the heap style biooxidation process. It is clear however, that sulfate formation throughout heap plays a very significant negative roll in the oxidation process. Elevated heap core temperatures, large fluxuations in peripheral heap zone temperatures, and extreme low pH values may temporarily serve to decimate local populations of iron oxidizing microbes. The temperature in the core area of the heap periodically exceeds 87°C. This is well above the maximum temperature survivable by most bacteria and may also be above the upper limits for the archaea strains present.;Both in-situ columns and laboratory columns were utilized for the study. The laboratory columns were operated under parameters intended to simulate extreme conditions present locally within the heap both spatially and temporally rather than under optimal conditions as is normally done in process labs. This allowed for phenomena such as sulfate channeling of air and fluid to be replicated. Many sulfates were identified including several iron sulfates thought to be the primary contributors to the sulfate formation. Aluminum was found to also be an important element in the formation of sulfate second only to iron. Aluminum occurs as aluminum sulfate (alunogen) as well as in several aluminum-iron sulfates. This complicates solution management as aluminum precipitation requires a higher solution pH than iron.;Lithology, specifically as related to permeability and alteration primarily as related to silicification and argillazation, are also major controlling factors regulating overall sulfide oxidation percentage within the heap. Given certain lithologic parameters, oxidizing fluids may only penetrate those sulfides directly exposed at the surface of the aggregate or along fractures. The average sulfide size rarely exceeds 1 mm resulting in a very narrow oxidation halo in low permeability lithologies. Petrographic examination of thin sections from the biooxidized samples commonly display little or no oxidation below the aggregate surface. The most porous and least silicified samples collected rarely display oxidation deeper than 2 to 3 mm below the aggregate surface.;A detailed understanding of sulfide mineral paragenesis and corresponding gold mineralizing events is important in determining the optimum duration of the biooxidation cycle for a specific lithologic host and its associated ore mineral assemblage. Multiple arsenian mineralization events may not all coincide with the gold mineralizing event and therefore may require more or less complete oxidation than currently perceived. Increasing silicification in conjunction with waning ore mineralization may also have caused varying degrees of late stage silica encapsulation or entrainment thereby locally inhibiting biooxidation. This study has also recognized the apparent coprecipitation of silica with the arsenian pyrite rims. Scanning electron microscope and microprobe analysis of arsenian pyrite rims revealed that some of the rims contain silica within the arsenian pyrite matrix. Locally extensive extremely fine-grain arsenian pyrite is common in certain lithologies or structural zones such as breccias or debris flows and may also be more easily isolated due to silica encapsulation.
机译:金矿采石场位于内华达州尤里卡县卡林镇以北11公里的卡林趋势南半部北部的Maggie Creek区。感兴趣的主要金属是金。矿石的大部分是硫化物难处理的,主要由均匀分布的极小金颗粒组成,其大小范围从胶体到大约50A,主要以固溶体的形式存在于包围某些前矿石黄铁矿的砷黄铁矿边缘的结构晶格中。晶体(Arehart等,1993)。砷黄铁矿通常也以离散的细粒弥散晶体或局部细粒块状或云状存在。;高品位硫化耐火矿石通过焙烧方法加工,因此,低品位矿石无法通过焙烧炉经济地加工。并通过成本介导的生物堆方法在三个标称的80万吨垫上进行氧化。然后将氧化后的低品位矿石用作工厂的辅助饲料。随着时间的推移,生物氧化液的循环利用已导致溶液在硫酸盐和各种金属中高度饱和,其中铁和铝是硫酸盐形成的最大贡献者。因此,堆料堆中发生脱水的局部区域可能会经历大量的次生含水硫酸盐矿物积聚。这些硫酸盐矿物质的积累会局部降低渗透率,并可能引导氧化溶液和诱导的气流,并限制骨料自身内部的扩散,从而导致氧化区域减少,进而金回收率降低。在2005年和2006年访问卸货垫时,肉眼观察到很大一部分堆是25%至30%,由于通道化或形成了硫酸盐雨伞而从局部生物溶液和气流混合物中分离出来,因此只有很小的一部分有很多复杂的因素影响堆式生物氧化过程的效率和有效性。但是很明显,整个堆料中硫酸盐的形成在氧化过程中起着非常显着的负向作用。堆芯温度升高,外围堆区温度的通量大以及pH值极低可能会暂时减少局部的铁氧化微生物。堆芯区域的温度定期超过87°C。这远高于大多数细菌可以生存的最高温度,也可能高于存在的古细菌菌株的上限。;使用了原位色谱柱和实验室色谱柱进行了研究。实验室色谱柱是在旨在模拟堆中局部存在的极端条件的空间和时间参数上运行的,而不是像在过程实验室中通常在最佳条件下那样。这使得诸如空气和流体的硫酸盐通道被复制的现象得以复制。鉴定出许多硫酸盐,包括几种认为是硫酸盐形成的主要贡献者的硫酸铁。发现铝也是形成硫酸盐中仅次于铁的重要元素。铝以硫酸铝(铝)和几种铝铁硫酸盐形式存在。这使溶液管理变得复杂,因为铝的沉淀需要比铁高的溶液pH值。岩性,特别是与渗透性和变化有关,主要与硅化和凝析有关,也是调节堆中总硫化物氧化百分比的主要控制因素。给定某些岩性参数氧化流体只能渗透直接暴露在集料表面或沿裂缝的那些硫化物。硫化物的平均尺寸很少超过1毫米,导致低渗透性​​岩性中的氧化晕非常窄。对来自生物氧化样品的薄切片的岩相学检查通常在聚集体表面以下显示很少或没有氧化。收集的多孔性最强,硅化程度最低的样品很少会在聚集体表面以下2到3毫米深处显示氧化。;详细了解硫化物矿物共生作用和相应的金矿化事件对于确定特定岩性生物氧化周期的最佳持续时间很重要主体及其相关的矿石矿物组合。多次砷化成矿事件可能并不都与金成矿事件一致,因此可能需要比当前所见程度更多或更少的完全氧化。硅化作用的增加以及矿石矿化的减少也可能导致了不同程度的后期二氧化硅包封或夹带,从而局部抑制了生物氧化。这项研究还认识到二氧化硅与砷黄铁矿边缘明显共沉淀。砷黄铁矿轮辋的扫描电子显微镜和探针分析表明,某些轮辋在砷黄铁矿基质中含有二氧化硅。在某些岩性或结构区域(例如角砾岩或泥石流)中,局部广泛分布的极细晶粒的黄铁矿黄铁矿很常见,由于二氧化硅的包封作用,它们也可能更容易分离。

著录项

  • 作者

    Sherlock, Wes K.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Geology.;Biology Microbiology.
  • 学位 M.S.
  • 年度 2010
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:04

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号