首页> 外文OA文献 >Feature extraction of kidney ultrasound images based on intensity histogram and gray level co-occurrence matrix
【2h】

Feature extraction of kidney ultrasound images based on intensity histogram and gray level co-occurrence matrix

机译:基于强度直方图和灰度共生矩阵的肾脏超声图像特征提取

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study proposes an approach of feature extraction of kidney ultrasound images based on five intensity histogram features and nineteen gray level co-occurrence matrix (GLCM) features. Kidney ultrasound images were divided into four different groups; normal (NR), bacterial infection (BI), cystic disease (CD) and kidney stones (KS). Before feature extraction, the images were initially preprocessed for preserving pixels of interest prior to feature extraction. Preprocessing techniques including region of interest cropping, contour detection, image rotation and background removal, have been applied. Test result shows that kurtosis, mean, skewness, cluster shades and cluster prominence dominates over other parameters. After normalization, KS group has highest value of kurtosis (1.000) and lowest value of cluster shades (0.238) and mean (0.649) while NR group has highest value of mean (1.000), skewness (1.000), cluster shades (1.000) and cluster prominence (1.000). CD group has the lowest value of skewness (0.625) and BI has the lowest value of kurtosis (0.542). This shows that these features can be used to classify kidney ultrasound images into different groups for creating database of kidney ultrasound images with different pathologies.
机译:这项研究提出了一种基于五个强度直方图特征和十九个灰度共生矩阵(GLCM)特征的肾脏超声图像特征提取方法。肾脏超声图像分为四个不同的组。正常(NR),细菌感染(BI),囊性疾病(CD)和肾结石(KS)。在特征提取之前,首先对图像进行预处理,以保留特征提取之前的关注像素。已经应用了包括感兴趣区域裁剪,轮廓检测,图像旋转和背景去除在内的预处理技术。测试结果表明,峰度,均值,偏度,簇阴影和簇凸显着高于其他参数。归一化后,KS组的峰度值(1.000)最高,簇阴影的平均值(0.238)和均值(0.649)最低,而NR组的平均值(1.000),偏度(1.000),簇阴影(1.000)和群集突出(1.000)。 CD组的偏度值最低(0.625),BI的峰度值最低(0.542)。这表明这些特征可用于将肾脏超声图像分为不同的组,以创建具有不同病理的肾脏超声图像的数据库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号