首页> 外文OA文献 >A Study On Gene Selection And Classification Algorithms For Classification Of Microarray Gene Expression Data
【2h】

A Study On Gene Selection And Classification Algorithms For Classification Of Microarray Gene Expression Data

机译:基因表达谱数据分类的基因选择和分类算法研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Development Of Microarray Technology Allows Researchers To Monitor The Expression Of Genes On A Genomic Scale. One Of The Main Applications Of Microarray Technology Is The Classification Of Tissue Samples Into Tumor Or Normal Tissue. Gene Selection Plays An Important Role Prior To Tissue Classification. In This Paper, A Study On Numerous Combinations Of Gene Selection Techniques And Classification Algorithms For Classification Of Microarray Gene Expression Data Is Presented. The Gene Selection Techniques Include Fisher Criterion, Golub Signal-To-Noise, TraditionaludT-Test And Mann-Whitney Rank Sum Statistic. The Classification Algorithms Include Support VectorudMachines (Svms) With Several Kernels And K-Nearest Neighbor(K-Nn). The Performance Of The Combined Techniques Is Validated By Using Leave-One-Out Cross Validation (Loocv) Technique And Receiver Operating Characteristic (Roc) Is Used To Analyze The Results. The Study DemonstratedudThat Selecting Genes Prior To Tissue Classification Plays An Important Role For A Better ClassificationudPerformance. The Best Combination Is Obtained By Using Mann-Whitney Rank Sum Statistic And Svms. The Best Roc Score Achieved For This Combination Is At 0.91. This Should Be Of Significant Value For Diagnostic Purposes As Well As For Guiding Further Exploration Of The Underlying Biology.
机译:微阵列技术的发展使研究人员可以在基因组规模上监控基因的表达。微阵列技术的主要应用之一是将组织样本分类为肿瘤或正常组织。基因选择在组织分类之前起着重要作用。本文提出了多种基因选择技术与分类算法相结合的芯片基因表达数据分类研究。基因选择技术包括Fisher准则,Golub信噪比,传统 udT检验和Mann-Whitney秩和统计。分类算法包括具有多个内核和K最近邻居(K-Nn)的支持向量 udMachines(Svm)。通过使用留一法交叉验证(Loocv)技术验证组合技术的性能,并使用接收器工作特性(Roc)来分析结果。这项研究表明,在组织分类之前选择基因对于更好的分类性能起着重要作用。使用Mann-Whitney排名总和统计量和Svm可获得最佳组合。此组合的最佳Roc得分为0.91。这对于诊断目的以及对基础生物学的进一步探索应具有重要价值。

著录项

  • 作者

    Yeo Lee Chin; Deris Safaai;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号