首页> 外文OA文献 >Development of symbolic algorithms for certain algebraic processes
【2h】

Development of symbolic algorithms for certain algebraic processes

机译:为某些代数过程开发符号算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested.
机译:这项研究调查了在有理数域上定义相对于正交基计算两个多项式的精确最大公约数的问题。这项研究的主要目的是为稠密多项式的一般类设计和实现一种有效且高效的符号算法,给定定义其项的有理数。根据使用同战矩阵方法的一般算法,规定了非模块化和模块化技术。如果广义多项式的系数是多精度整数,则在同战矩阵和相应的系统系数矩阵的构造中将需要多精度算术。另外,在该系数矩阵上应用非模消除技术广泛地应用了多精度有理数运算。采用模块化技术以最小化这种计算中涉及的复杂性。能够检测到不幸的减少的除数测试算法是有效实施模块化技术的关键设备。凭借先验未知的真实解决方案的界限,设计了测试并将其小心地合并到模块化算法中。结果表明,该模块化算法在相对质数多项式类别中表现出最佳性能。经验计算时间结果表明,在足够密集的Legendre基多项式和较小的GCD解的情况下,模块化算法明显优于非模块化算法。对于具有大GCD解的密集勒让德基础多项式,在高阶多项式中,模块化算法明显优于非模块化算法。为了获得更明确的结论,本报告中介绍的算法的计算时间功能已经确定。还建议进一步调查。

著录项

  • 作者

    Abd. Rahman Ali; Aris Noraini;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号