首页> 外文OA文献 >Development of fault detection, diagnosis and control system identification using multivariate statistical process control (MSPC)
【2h】

Development of fault detection, diagnosis and control system identification using multivariate statistical process control (MSPC)

机译:使用多元统计过程控制(MSPC)开发故障检测,诊断和控制系统识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Processes exhibit complex behavior in chemical industries which makes the development of reliable theoretical models a very difficult and time consuming task. The resulting models are also often complex which poses additional problem for robust on-line process fault detection, diagnosis and control of these processes. Efficient process fault detection and diagnosis in processes is important to reduce the cost of producing products with undesired specifications. Multivariate Statistical Process Control (MSPC) uses historical data of processes to develop useful process fault detection, diagnosis and control tools. Thus, the availability of theoretical models is not an important factor in the implementation of MSPC on processes. The present fault detection and diagnosis (FDD) method based on MSPC uses statistical control charts and contribution plots. These charts are efficient in fault detection but ambiguous in diagnosis of fault cause of detected faults due to the absence of control limits in the contribution plots. In this research work, an FDD algorithm is developed using MSPC and correlation coefficients between process variables. Normal Correlation (NC), Modified Principal Component Analysis (PCA) and udPartial Correlation Analysis (PCorrA) are used to develop the correlation coefficients between selected key process variables and quality variables of interest. Shewhart Control Chart (SCC) and Range Control Chart (RCC) are used with the developed correlation coefficients for FDD. The developed FDD algorithm was implemented on a simulated distillation column which is a single equipment process. Results showed that the developed FDD algorithm successfully detect and diagnosed the pre-designed faults. The implementation of the developed FDD algorithm on a chemical plant can reduce the operational cost due to early detection and diagnosis of faults in the process and improving the performance of the plant. ud
机译:在化学工业中,过程表现出复杂的行为,这使得可靠的理论模型的开发变得非常困难且耗时。结果模型通常也很复杂,这给这些过程的可靠的在线过程故障检测,诊断和控制带来了额外的问题。在过程中进行有效的过程故障检测和诊断对于降低生产不符合要求的产品的成本非常重要。多元统计过程控制(MSPC)使用过程的历史数据来开发有用的过程故障检测,诊断和控制工具。因此,理论模型的可用性不是在过程中实施MSPC的重要因素。当前基于MSPC的故障检测和诊断(FDD)方法使用统计控制图和贡献图。这些图表在故障检测中很有效,但是由于贡献图中没有控制限制,因此在诊断检测到的故障的故障原因时模棱两可。在这项研究工作中,使用MSPC和过程变量之间的相关系数开发了FDD算法。使用正态相关(NC),修正主成分分析(PCA)和 udPartial相关分析(PCorrA)来开发所选关键过程变量和目标质量变量之间的相关系数。 Shewhart控制图(SCC)和范围控制图(RCC)与FDD的相关系数一起使用。所开发的FDD算法是在模拟蒸馏塔上实施的,该蒸馏塔是单设备过程。结果表明,所开发的FDD算法可以成功地检测和诊断预先设计的故障。在化工厂中实施开发的FDD算法可以减少由于早期检测和诊断过程中的故障而导致的运营成本,并提高工厂的性能。 ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号