首页> 外文OA文献 >Fault detection for distillation column using multivariate stastistical process control (MSPC)
【2h】

Fault detection for distillation column using multivariate stastistical process control (MSPC)

机译:使用多元统计过程控制(MSPC)的蒸馏塔故障检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chemical process is inclined to be a large-scale, complex and having stringent requirements on the desired quality. It also utilizes a lot of energy, must be environmentally friendly and fulfill safety requirements. Accurate process fault detection at an early stage of the process is important to modern chemical plant in achieving the above requirements. This paper focuses on the application of Multivariate Statistical Process Control (MSPC) as a fault detection tool. An industrial distillation column is modelled and chosen as the case study for this research. Principal Component Analysis (PCA) and Partial Correlation Analysis (PCorrA) are used to develop the correlation coefficients between the variables of the process. Faults considered in the research are sensor failures, valve failures and controller malfunctions. Shewhart Control Chart with the developed correlation coefficients are used for detecting the faults. Results show that both methods based on PCorrA and PCA are able to detect the pre-designed faults.
机译:化学过程倾向于大规模,复杂并且对期望的质量有严格的要求。它还消耗大量能量,必须环保并且满足安全要求。在过程的早期阶段进行准确的过程故障检测对于现代化工厂达到上述要求很重要。本文着重于将多元统计过程控制(MSPC)用作故障检测工具。对工业蒸馏塔进行建模并选择该案例作为案例研究。主成分分析(PCA)和部分相关分析(PCorrA)用于开发过程变量之间的相关系数。研究中考虑的故障是传感器故障,阀门故障和控制器故障。具有相关系数的Shewhart控制图用于检测故障。结果表明,基于PCorrA和PCA的两种方法都能够检测到预先设计的故障。

著录项

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号