首页> 外文OA文献 >Carbon dioxide reforming of methane to syngas: modeling using response surface methodology and artificial neural networkud
【2h】

Carbon dioxide reforming of methane to syngas: modeling using response surface methodology and artificial neural networkud

机译:甲烷二氧化碳重整为合成气:使用响应面方法和人工神经网络建模 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

1wt% Of Rhodium (Rh) On Magnesium Oxide (Mgo) Catalyst Have Been Investigated For Carbon Dioxide Reforming Of Methane (CORM) With The Effect Of Oxygen. The Effect Of Temperature,O2/CH4 Ratio And Catalyst Weight On The Methane Conversion, Synthesis Gas Selectivity And H2/CO Ratio Were Studied. With The Help Of Experimental Design, Two Mathematical Approaches: Empirical Polynomial And Artificial Neural Network Were Developed. Empirical Polynomial Models Correlation Coefficient, R, Was Above 85%. However, The Feed Forward Neural Network Correlation Coefficient Was More Than 95%. The Feed Forward Neural Network Modeling Approach Was Found To Be More Efficient Than The Empirical Model Approach. The Condition For Maximum Methane Conversion Was Obtained At 850°C With O2/ CH4 Ratio Of 0.14 And 141 Mg Of Catalyst Resulting In 95% Methane Conversion. A Maximum Of 40% Hydrogen Selectivity Was Achieved At 909°C, 0.23 Of O2/CH4 Ratio And 309 Mg Catalyst. The Maximum H2/CO Ratio Of 1.6 Was Attained At 758°C, 0.19 Of O2/CH4 And 360 Mg Catalyst.
机译:已经研究了氧化镁(Mgo)催化剂上1wt%的铑(Rh)在氧气作用下对甲烷(CORM)进行二氧化碳重整的方法。研究了温度,O2 / CH4比和催化剂重量对甲烷转化率,合成气选择性和H2 / CO比的影响。在实验设计的帮助下,开发了两种数学方法:经验多项式和人工神经网络。经验多项式模型的相关系数R大于85%。但是,前馈神经网络相关系数大于95%。发现前馈神经网络建模方法比经验模型方法更有效。达到最大甲烷转化率的条件是在850°C下以0.14的O2 / CH4比和141 Mg的催化剂产生95%的甲烷转化率。在909°C,0.23的O2 / CH4比和309 Mg催化剂下,氢选择性最高达到40%。在758°C下,H2 / CO的最大比率为1.6,O2 / CH4为0.19,催化剂为360 Mg。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号