首页> 外文OA文献 >Improving network topology-based protein interactome mapping via collaborative filtering
【2h】

Improving network topology-based protein interactome mapping via collaborative filtering

机译:通过协同过滤改善基于网络拓扑的蛋白质相互作用体图谱

摘要

High-throughput screening (HTS) techniques enable massive identification of protein-protein interactions (PPIs). Nonetheless, it is still intractable to observe the full mapping of PPIs. With acquired PPI data, scalable and inexpensive computation-based approaches to protein interactome mapping (PIM), which aims at increasing the data confidence and predicting new PPIs, are desired in such context. Network topology-based approaches prove to be highly efficient in addressing this issue; yet their performance deteriorates significantly on sparse HTS-PPI networks. This work aims at implementing a highly efficient network topology-based approach to PIM via collaborative filtering (CF), which is a successful approach to addressing sparse matrices for personalized-recommendation. The motivation is that the problems of PIM and personalized-recommendation have similar solution spaces, where the key is to model the relationship among involved entities based on incomplete information. Therefore, it is expected to improve the performance of a topology-based approach on sparse HTS-PPI networks via integrating the idea of CF into it. We firstly model the HTS-PPI data into an incomplete matrix, where each entry describes the interactome weight between corresponding protein pair. Based on it, we transform the functional similarity weight in topology-based approaches into the inter-neighborhood similarity (I-Sim) to model the protein-protein relationship. Finally, we apply saturation-based strategies to the I-Sim model to achieve the CF-enhanced topology-based (CFT) approach to PIM.
机译:高通量筛选(HTS)技术可实现蛋白质-蛋白质相互作用(PPI)的大量鉴定。尽管如此,观察PPI的完整映射仍然很棘手。在获取的PPI数据的情况下,需要一种可伸缩且廉价的基于蛋白质的蛋白质组分析(PIM)的基于计算的方法,该方法旨在提高数据的可信度并预测新的PPI。基于网络拓扑的方法在解决此问题方面被证明是高效的。但是,在稀疏的HTS-PPI网络上,它们的性能会大大降低。这项工作旨在通过协作过滤(CF)为PIM实现一种基于网络拓扑的高效方法,这是一种针对稀疏矩阵进行个性化推荐的成功方法。这样做的动机是,PIM和个性化推荐的问题具有相似的解决方案空间,其中的关键是基于不完整的信息对相关实体之间的关系进行建模。因此,期望通过将CF的思想集成到稀疏的HTS-PPI网络中来改进基于拓扑的方法的性能。我们首先将HTS-PPI数据建模为一个不完整的矩阵,其中每个条目都描述了相应蛋白质对之间的相互作用组权重。在此基础上,我们将基于拓扑的方法中的功能相似性权重转换为邻居间相似性(I-Sim),以对蛋白质-蛋白质关系进行建模。最后,我们将基于饱和度的策略应用于I-Sim模型,以实现基于CF增强的拓扑(CFT)的PIM方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号