首页> 外文OA文献 >A self organizing map optimization based image recognition and processing model for bridge crack inspection
【2h】

A self organizing map optimization based image recognition and processing model for bridge crack inspection

机译:基于自组织图优化的桥梁裂缝检测图像识别与处理模型

摘要

The current deterioration inspection method for bridges heavily depends on human recognition, which is time consuming and subjective. This research adopts Self Organizing Map Optimization (SOMO) integrated with image processing techniques to develop a crack recognition model for bridge inspection. Bridge crack data from 216 images was collected from the database of the Taiwan Bridge Management System (TBMS), which provides detailed information on the condition of bridges. This study selected 40 out of 216 images to be used as training and testing datasets. A case study on the developed model implementation is also conducted in the severely damage Hsichou Bridge in Taiwan. The recognition results achieved high accuracy rates of 89% for crack recognition and 91% for non-crack recognition. This model demonstrates the feasibility of accurate computerized recognition for crack inspection in bridge management.
机译:当前用于桥梁的劣化检查方法在很大程度上取决于人类的识别,这既费时又主观。这项研究采用自组织地图优化(SOMO)与图像处理技术相集成,以开发桥梁识别的裂缝识别模型。从台湾桥梁管理系统(TBMS)的数据库中收集了来自216张图像的桥梁裂缝数据,该数据库提供了有关桥梁状况的详细信息。这项研究从216张图像中选择了40张作为训练和测试数据集。在台湾遭受严重破坏的西周桥上也进行了开发模型实施的案例研究。识别结果实现了89%的裂纹识别和91%的非裂纹识别的高精度率。该模型证明了在桥梁管理中对裂缝检测进行精确计算机识别的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号