首页> 外文OA文献 >Fuzzy partition based soft subspace clustering and its applications in high dimensional data
【2h】

Fuzzy partition based soft subspace clustering and its applications in high dimensional data

机译:基于模糊分区的软子空间聚类及其在高维数据中的应用

摘要

As one of the most popular clustering techniques for high dimensional data, soft subspace clustering (SSC) algorithms have been receiving a great deal of attention in recent years. Unfortunately, most existing works do not cluster high dimensional sparse data and noisy data in an effective manner. In this study, a novel soft subspace clustering algorithm called PI-SSC is proposed. By introducing a partition index (PI) into the objective function, a novel soft subspace clustering algorithm that combines the concepts of hard and fuzzy clustering is proposed. Furthermore, the robust property of PI-SSC is analyzed from the viewpoint of ε-insensitive distance. A convergence theorem for PI-SSC is also established by applying Zangwill's convergence theorem. The results of the experiment demonstrate the effectiveness of the proposed algorithm in high dimensional sparse text data and noisy texture data.
机译:作为高维数据最流行的聚类技术之一,软子空间聚类(SSC)算法近年来受到了广泛的关注。不幸的是,大多数现有作品并未以有效方式将高维稀疏数据和嘈杂数据聚类。在这项研究中,提出了一种新颖的软子空间聚类算法PI-SSC。通过将分区索引(PI)引入目标函数,提出了一种结合了硬聚类和模糊聚类概念的新型软子空间聚类算法。此外,从ε不敏感距离的角度分析了PI-SSC的鲁棒性。通过应用Zangwill的收敛定理,还建立了PI-SSC的收敛定理。实验结果证明了该算法在高维稀疏文本数据和嘈杂纹理数据中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号