首页> 外文OA文献 >ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS
【2h】

ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS

机译:使用LUBE方法和MOFIPS的基于ANN的流量流量区间预测

摘要

The estimation of prediction intervals (PIs) is a major issue limiting the use of Artificial Neural Networks (ANN) solutions for operational streamflow forecasting. Recently, a Lower Upper Bound Estimation (LUBE) method has been proposed that outperforms traditional techniques for ANN-based PI estimation. This method construct ANNs with two output neurons that directly approximate the lower and upper bounds of the PIs. The training is performed by minimizing a coverage width-based criterion (CWC), which is a compound, highly nonlinear and discontinuous function. In this work, we test the suitability of the LUBE approach in producing PIs at different confidence levels (CL) for the 6 h ahead streamflow discharges of the Susquehanna and Nehalem Rivers, US. Due to the success of Particle Swarm Optimization (PSO) in LUBE applications, variants of this algorithm have been employed for CWC minimization. The results obtained are found to vary substantially depending on the chosen PSO paradigm. While the returned PIs are poor when single-objective swarm optimization is employed, substantial improvements are recorded when a multi-objective framework is considered for ANN development. In particular, the Multi-Objective Fully Informed Particle Swarm (MOFIPS) optimization algorithm is found to return valid PIs for both rivers and for the three CL considered of 90%, 95% and 99%. With average PI widths ranging from a minimum of 7% to a maximum of 15% of the range of the streamflow data in the test datasets, MOFIPS-based LUBE represents a viable option for straightforward design of more reliable interval-based streamflow forecasting models.
机译:预测间隔(PI)的估计是一个主要问题,限制了将人工神经网络(ANN)解决方案用于业务流预测的使用。最近,已经提出了一种下上限估计(LUBE)方法,该方法优于基于ANN的PI估计的传统技术。该方法构造具有两个输出神经元的ANN,这些输出神经元直接逼近PI的上下限。通过最小化基于覆盖宽度的标准(CWC)来执行训练,该标准是一种复合,高度非线性和不连续的函数。在这项工作中,我们测试了LUBE方法在美国Susquehanna河和Nehalem河向前6小时的流量排放中以不同置信度(CL)生成PI的适用性。由于粒子群优化(PSO)在LUBE应用中取得了成功,因此该算法的变体已被用于CWC的最小化。发现所获得的结果根据所选的PSO范例而有很大不同。当采用单目标群优化时,虽然返回的PI较差,但是当考虑将多目标框架用于ANN开发时,会记录到明显的改进。特别是,发现多目标全信息粒子群(MOFIPS)优化算法可返回两条河流以及考虑为90%,95%和99%的三个CL的有效PI。基于PI的平均宽度范围为测试数据集中流量数据范围的最小7%至最大15%,基于MOFIPS的LUBE是直接设计更可靠的基于间隔的流量预测模型的可行选择。

著录项

  • 作者

    Taormina R; Chau KW;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号