首页> 外文OA文献 >An immunology-inspired multi-engine anomaly detection system with hybrid particle swarm optimisations
【2h】

An immunology-inspired multi-engine anomaly detection system with hybrid particle swarm optimisations

机译:免疫学启发的混合微粒群优化多引擎异常检测系统

摘要

In this paper, multiple detection engines with multi-layered intrusion detection mechanisms are proposed for enhancing computer security. The principle is to coordinate the results from each single-engine intrusion alert system, which seamlessly integrates with a multiple layered distributed service-oriented structure. An improved hidden Markov model (HMM) is created for the detection engine which is capable of the immunology-based self/nonself discrimination. The classifications of normal and abnormal behaviours of system calls are further examined by an advanced fuzzy-based inference process tuned by HPSOWM. Considering a real benchmark dataset from the public domain, our experimental results show that the proposed scheme can greatly shorten the training time of HMM and significantly reduce the false positive rate. The proposed HPSOWM works especially well for the efficient classification of unknown behaviors and malicious attacks.
机译:为了提高计算机安全性,本文提出了具有多层入侵检测机制的多种检测引擎。原理是协调每个单引擎入侵警报系统的结果,该系统与多层分布式面向服务的结构无缝集成。为检测引擎创建了一种改进的隐马尔可夫模型(HMM),该模型能够进行基于免疫学的自我/非自我区分。通过HPSOWM调整的基于模糊的高级推理过程,可以进一步检查系统调用的正常行为和异常行为的分类。考虑到来自公共领域的真实基准数据集,我们的实验结果表明,该方案可以大大缩短HMM的训练时间,并显着降低误报率。提出的HPSOWM特别适用于有效分类未知行为和恶意攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号