首页> 外文OA文献 >A new symbolization and distance measure based anomaly mining approach for hydrological time series
【2h】

A new symbolization and distance measure based anomaly mining approach for hydrological time series

机译:基于符号和距离测度的水文时间序列异常挖掘新方法

摘要

Most of the time series data mining tasks attempt to discover data patterns that appear frequently. Abnormal data is often ignored as noise. There are some data mining techniques based on time series to extract anomaly. However, most of these techniques cannot suit big unstable data existing in various fields. Their key problems are high fitting error after dimension reduction and low accuracy of mining results. This paper studies an approach of mining time series abnormal patterns in the hydrological field. The authors propose a new idea to solve the problem of hydrological anomaly mining based on time series. They propose Feature Points Symbolic Aggregate Approximation (FP-SAX) to improve the selection of feature points, and then measures the distance of strings by Symbol Distance based Dynamic Time Warping (SD-DTW). Finally, the distances generated are sorted. A set of dedicated experiments are performed to validate the authors' approach. The results show that their approach has lower fitting error and higher accuracy compared to other approaches.
机译:大多数时间序列数据挖掘任务都会尝试发现频繁出现的数据模式。异常数据通常被视为噪声。有一些基于时间序列的数据挖掘技术可以提取异常。但是,这些技术中的大多数不能适应存在于各个领域的大型不稳定数据。它们的关键问题是尺寸减小后的拟合误差高以及采矿结果的准确性低。本文研究了一种在水文领域中挖掘时间序列异常模式的方法。作者提出了一种新的思想来解决基于时间序列的水文异常开采问题。他们提出了特征点符号聚合近似(FP-SAX)来改进特征点的选择,然后通过基于符号距离的动态时间规整(SD-DTW)测量字符串的距离。最后,对生成的距离进行排序。进行了一组专用实验以验证作者的方法。结果表明,与其他方法相比,他们的方法具有较低的拟合误差和较高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号