首页> 外文OA文献 >An improved acoustical wave propagator method and its application to a duct structure
【2h】

An improved acoustical wave propagator method and its application to a duct structure

机译:改进的声波传播器方法及其在管道结构中的应用

摘要

The pseudospectral time-domain method has long been used to describe the acoustical wave propagation. However, due to the limitation and difficulties of the fast Fourier transform (FFT) in dealing with nonperiodic problems, the dispersion error is inevitable and the numerical accuracy greatly decreases after the waves arrive at the boundary. To resolve this problem, the Lagrange-Chebyshev interpolation polynomials were used to replace the previous FFT, which, however, brings in an additional restriction on the time step. In this paper, a mapped Chebyshev method is introduced, providing the dual benefit of preserving the spectral accuracy and overcoming the time step restriction at the same time. Three main issues are addressed to assess the proposed technique: (a) Spatial derivatives in the system operator and the boundary treatment; (b) parameter selections; and (c) the maximum time step in the temporal operator. Furthermore, a numerical example involving the time-domain evolution of wave propagation in a duct structure is carried out, with comparisons to those obtained by Euler method, the fourth-order Runge-Kutta method, and the exact analytical solution, to demonstrate the numerical performance of the proposed technique.
机译:伪谱时域方法长期以来一直用于描述声波的传播。但是,由于快速傅里叶变换(FFT)在处理非周期性问题方面的局限性和困难,色散误差是不可避免的,并且在波到达边界后数值精度会大大降低。为了解决此问题,使用拉格朗日-切比雪夫插值多项式代替了先前的FFT,但是这给时间步长带来了额外的限制。本文介绍了一种映射的切比雪夫方法,具有保留频谱准确性和同时克服时间步长限制的双重好处。评估所提出的技术需要解决三个主要问题:(a)系统算子中的空间导数和边界处理; (b)参数选择; (c)时间运算符中的最大时间步长。此外,还通过算例说明了波导管结构中波传播的时域演化,并与欧拉法,四阶龙格-库塔法和精确的解析解进行了比较,以证明该数值。所提出技术的性能。

著录项

  • 作者

    Peng SZ; Cheng L;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号