首页> 外文OA文献 >An approach to evaluate the absolute accuracy of WVR water vapor measurements inferred from multiple water vapor techniques
【2h】

An approach to evaluate the absolute accuracy of WVR water vapor measurements inferred from multiple water vapor techniques

机译:一种从多种水蒸气技术推论得出的WVR水蒸气测量绝对精度的方法

摘要

This paper uses three different types of water vapor observation instruments, radiosonde, AERONET sunphotometer and GPS, to infer the regression coefficients of one WVR (model: WVR-1100) in Hong Kong - a coastal city with high humidity. The regression using the three types of reference water vapor data is performed on a monthly basis for 6 months from January to June 2012. In order to evaluate the WVR regression accuracies, a water vapor-assisted (WV-assisted) GPS Precise Point Positioning (PPP) method is proposed. The inferred water vapor data are directly injected into PPP computation to correct the water vapor wet tropospheric delay in GPS signals. In principle, water vapor of better accuracy will produce GPS PPP solutions of higher accuracy. Our analysis results show that the radiosonde, AERONET and GPS data all can be used to regress WVR and produce accurate WVR water vapor if the regressed instruments have good data quality. We find that the WVR water vapor inferred from GPS water vapor regression has the most reliable regression results. The vertical component of PPP solutions is very stable, with consistent biases (bias varying by 0.38. cm) and standard deviations (bias variation by 0.59. cm) over a 6-month period in 2012. When sufficient AEROENT water vapor data are available for WVR regression, the WVR water vapor accuracy will become compatible with that inferred from GPS water vapor regression. However AERONET water vapor measurements are seriously affected by weather condition and can be obtained only in sunny and clear conditions. Compared with the bias variation of 0.38. cm using GPS water vapor to regress WVR, the WVR water vapor data regressed by radiosonde result in a bias variation of 3.95. cm in the PPP vertical component during the 6-month period. All of the regressed WVR contain a bias, which possibly results from the fact that the WVR, GPS, AERONET and radiosonde stations are all horizontally and vertically separated. Overall, the WVR water vapor data inferred from GPS water vapor regression are regarded to be most reliable and it is the most suitable data source for WVR regression.
机译:本文使用三种不同类型的水汽观测仪器,即探空仪,AERONET太阳光度计和GPS来推断香港一个高湿度沿海城市WVR(型号:WVR-1100)的回归系数。从2012年1月到2012年6月,每月使用3种参考水蒸气数据进行回归,为期6个月。为了评估WVR回归的准确性,我们使用了水蒸气辅助(WV辅助)GPS精确点定位(提出了PPP)方法。推断出的水蒸气数据直接注入PPP计算中,以校正GPS信号中的水蒸气湿对流层延迟。原则上,精度更高的水蒸气将产生精度更高的GPS PPP解决方案。我们的分析结果表明,如果回归仪器具有良好的数据质量,则无线电探空仪,AERONET和GPS数据都可以用于回归WVR并产生准确的WVR水汽。我们发现,从GPS水汽回归推断出的WVR水汽具有最可靠的回归结果。 PPP解决方案的垂直组件非常稳定,在2012年的6个月内具有一致的偏差(偏差变化0.38。cm)和标准偏差(偏差变化0.59。cm)。如果有足够的AEROENT水蒸气数据可用于WVR回归后,WVR水汽精度将与GPS水汽回归推断的精度兼容。但是,AERONET水蒸气的测量值会受到天气状况的严重影响,并且只有在晴天和晴朗的条件下才能获得。与0.38的偏差相比。如果使用GPS水汽对WVR进行回归,则无线电探空仪反演的WVR水汽数据将导致3.95的偏差变化。 6个月内的PPP垂直分量的平方厘米。所有回归的WVR都包含一个偏差,这可能是由于WVR,GPS,AERONET和无线电探空仪站都在水平和垂直方向上分开的事实造成的。总体而言,从GPS水汽回归推断的WVR水汽数据被认为是最可靠的,并且是最适合WVR回归的数据源。

著录项

  • 作者

    Liu Z; Li M; Zhong W; Wong MS;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号