首页> 外文OA文献 >Application of data mining techniques in customer relationship management : a literature review and classification
【2h】

Application of data mining techniques in customer relationship management : a literature review and classification

机译:数据挖掘技术在客户关系管理中的应用:文献综述与分类

摘要

Despite the importance of data mining techniques to customer relationship management (CRM), there is a lack of a comprehensive literature review and a classification scheme for it. This is the first identifiable academic literature review of the application of data mining techniques to CRM. It provides an academic database of literature between the period of 2000-2006 covering 24 journals and proposes a classification scheme to classify the articles. Nine hundred articles were identified and reviewed for their direct relevance to applying data mining techniques to CRM. Eighty-seven articles were subsequently selected, reviewed and classified. Each of the 87 selected papers was categorized on four CRM dimensions (Customer Identification, Customer Attraction, Customer Retention and Customer Development) and seven data mining functions (Association, Classification, Clustering, Forecasting, Regression, Sequence Discovery and Visualization). Papers were further classified into nine sub-categories of CRM elements under different data mining techniques based on the major focus of each paper. The review and classification process was independently verified. Findings of this paper indicate that the research area of customer retention received most research attention. Of these, most are related to one-to-one marketing and loyalty programs respectively. On the other hand, classification and association models are the two commonly used models for data mining in CRM. Our analysis provides a roadmap to guide future research and facilitate knowledge accumulation and creation concerning the application of data mining techniques in CRM.
机译:尽管数据挖掘技术对客户关系管理(CRM)十分重要,但缺乏全面的文献综述和分类方案。这是对数据挖掘技术在CRM中的应用的首次可识别的学术文献综述。它提供了2000-2006年间涵盖24种期刊的文献学术数据库,并提出了对文章进行分类的分类方案。确定和审查了900篇文章,这些文章与将数据挖掘技术应用于CRM的直接相关性。随后选择,审查和分类了八十七篇文章。选出的87篇论文中的每篇论文都按四个CRM维度(客户识别,客户吸引力,客户保留和客户发展)和七个数据挖掘功能(关联,分类,聚类,预测,回归,序列发现和可视化)进行分类。根据每篇论文的主要重点,将论文根据不同的数据挖掘技术进一步分为9个CRM元素子类别。审查和分类过程得到独立验证。本文的发现表明,客户保留的研究领域受到了最多的研究关注。其中,大多数分别与一对一的营销和忠诚度计划有关。另一方面,分类和关联模型是CRM中数据挖掘的两个常用模型。我们的分析提供了一个路线图,以指导未来的研究,并促进有关数据挖掘技术在CRM中的应用的知识积累和创造。

著录项

  • 作者

    Ngai EWT; Xiu L; Chau DCK;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号