首页> 外文OA文献 >Process design of microchip encapsulation : a case based reasoning with fuzzy retrieval approach
【2h】

Process design of microchip encapsulation : a case based reasoning with fuzzy retrieval approach

机译:芯片封装工艺设计:基于实例的模糊检索推理。

摘要

The microelectronic industry continues to grow rapidly in size and importance. The industry has already reached the size of other major industries with sales of product and equipment totalling billions of dollars a year. Among all the options available for semiconductor assembly, plastic packaging by using epoxy based encapsulation process is less expensive and accounts for approximately 80% of the worldwide packaging share and this percentage is increasing. Microchip encapsulation based on transfer molding is one of the important processes of semiconductor manufacturing. Quality is heavily dependent on the encapsulation mold design, selection of molding compound and process parameter setting of encapsulation molding. In current practice, encapsulation mold design and parameter setting of the transfer molding are done manually in a trial-and-error manner which would result in long lead time for obtaining acceptable molding quality. In this paper, an artificial intelligence technique, Case Based Reasoning with Fuzzy Retrieval, is described to perform process design of microchip encapsulation from which a case based system for microchip encapsulation, named CBS-ME, was developed. The system aims to automate the design of the key elements of encapsulation molds, suggest process parameters for transfer molding and improve its own design know-how through a learning process. A validation test was performed and the system solutions were benchmarked with the solutions obtained from the actual molding. Deviation of the two sets of solutions for mold design parameter setting and process parameter setting are 3.5% and 6% respectively.
机译:微电子工业的规模和重要性继续迅速增长。该行业已经达到了其他主要行业的规模,产品和设备的年销售额总计达数十亿美元。在所有可用于半导体组装的选项中,使用基于环氧树脂的封装工艺进行的塑料封装价格便宜,并且约占全球封装份额的80%,并且这一百分比还在不断增加。基于传递模塑的微芯片封装是半导体制造的重要过程之一。质量在很大程度上取决于密封模的设计,模塑料的选择以及密封模的工艺参数设置。在当前实践中,传递模具的封装模具设计和参数设置是通过反复试验手动进行的,这将导致较长的交货时间,以获得可接受的模具质量。本文介绍了一种人工智能技术,即基于案例的推理与模糊检索,以进行微芯片封装的工艺设计,并由此开发了基于案例的微芯片封装系统CBS-ME。该系统旨在使封装模具关键元件的设计自动化,为传递模塑建议工艺参数,并通过学习过程提高自身的设计知识。进行了验证测试,并将系统解决方案与从实际成型中获得的解决方案进行了比较。模具设计参数设置和工艺参数设置的两组解决方案的偏差分别为3.5%和6%。

著录项

  • 作者

    Tong KW; Kwong CK;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号