首页> 外文OA文献 >A finite-volume method for deformation analysis of woven fabrics
【2h】

A finite-volume method for deformation analysis of woven fabrics

机译:机织物变形分析的有限体积法

摘要

Efficient numerical methods for simulating cloth deformations have been identified as the key to the development of successful Computer-Aided Design systems for clothing products. This paper presents the formulation of a new finite-volume method for the simulation of complex deformations of initially flat woven fabric sheets under self-weight or externally applied loading. The fabric sheet is assumed to undergo very large displacements and rotations but small strains during the process of deformation. The fabric material is assumed to be linear elastic and orthotropic. The fabric sheet is discretized into many small structured patches called finite volumes (or control volumes), each containing one grid node and several face nodes. The bending and membrane deformations of a typical volume can be defined using the global co-ordinates of its grid node and surrounding face nodes. The equilibrium equations governing the complex deformations are derived employing the principle of stationary total potential energy. These equations are solved using a single-step full Newton-Raphson method which is found to be capable of predicting the final deformed shape, the only result of interest in a fabric drape analysis. To speed up convergence, the line search technique is adopted with good effect. This single-step approach is more efficient than the step-by-step incremental approach employed in conventional non-linear finite element analysis of load-bearing structures. A number of example simulations of fabric drape/buckling deformations are included in the paper, which demonstrate the efficiency and validity of the proposed method.
机译:有效的模拟布料变形的数值方法已被确定为成功开发用于服装产品的计算机辅助设计系统的关键。本文提出了一种新的有限体积方法的公式,用于模拟在自重或外部施加的载荷下初始平面机织织物片的复杂变形。假定织物片在变形过程中经历很大的位移和旋转,但是应变很小。假定织物材料是线性弹性和正交各向异性的。织物薄片被离散为许多小的结构化补丁,称为有限体积(或控制体积),每个包含一个网格节点和几个面节点。可以使用其网格节点和周围面节点的全局坐标来定义典型体积的弯曲和膜变形。利用平稳的总势能原理导出了控制复杂变形的平衡方程。使用单步完全牛顿-拉夫森法求解这些方程,发现该方法能够预测最终的变形形状,这是织物悬垂分析中唯一感兴趣的结果。为了加快收敛速度​​,采用了行搜索技术,效果很好。这种单步方法比常规的承重结构非线性有限元分析中采用的逐步方法更有效。本文包含了许多织物悬垂/屈曲变形的实例仿真,证明了该方法的有效性和有效性。

著录项

  • 作者

    Teng JG; Chen SF; Hu JL;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号