首页> 外文OA文献 >Robust kernel discriminant analysis and its application to feature extraction and recognition
【2h】

Robust kernel discriminant analysis and its application to feature extraction and recognition

机译:鲁棒的内核判别分析及其在特征提取与识别中的应用

摘要

Subspace analysis is an effective technique for dimensionality reduction, which aims at finding a low-dimensional space of high-dimensional data. In this paper, a novel subspace method called robust kernel discriminant analysis is proposed for dimensionality reduction. An optimization function is firstly defined in terms of the distance between similar elements and the distance between dissimilar elements, which can preserve the structure of the data in the mapping space. Then the optimization function is transformed into an eigenvalue problem and the projection vectors are obtained by solving the eigenvalue problem. Finally, experimental results on face images and handwritten numerical characters demonstrate the effectiveness and feasibility of the proposed method.
机译:子空间分析是一种有效的降维技术,其目的是寻找高维数据的低维空间。本文提出了一种新的子空间方法,称为鲁棒核判别分析,用于降维。首先根据相似元素之间的距离和不同元素之间的距离定义一个优化函数,该函数可以保留映射空间中的数据结构。然后将优化函数转化为特征值问题,并通过求解特征值问题获得投影矢量。最后,在人脸图像和手写数字字符上的实验结果证明了该方法的有效性和可行性。

著录项

  • 作者

    Liang Z; Zhang D; Shi P;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号