首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >L1-Norm Kernel Discriminant Analysis Via Bayes Error Bound Optimization for Robust Feature Extraction
【24h】

L1-Norm Kernel Discriminant Analysis Via Bayes Error Bound Optimization for Robust Feature Extraction

机译:基于贝叶斯误差界优化的L1-Norm核判别分析,用于鲁棒特征提取

获取原文
获取原文并翻译 | 示例

摘要

A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.
机译:在贝叶斯最优性的理论框架下,提出了一种新的判别分析准则。与传统的Fisher判别准则相反,提出的准则的主要新颖之处在于使用L1规范而不是L2规范,这使其对异常值的敏感性降低。利用L1-范数判别准则,针对线性特征提取问题,提出了一种新的线性判别分析(L1-LDA)方法。为了解决L1-LDA优化问题,我们提出了一种有效的迭代算法,其中引入了一种新的代理凸函数,使得每次迭代中的优化问题都是简单地解决凸规划问题,并保证了闭式解。这个问题。此外,我们还利用核技巧对L1-LDA方法进行了概括,以解决非线性鲁棒特征提取问题,此后提出了L1-范数核判别分析(L1-KDA)方法。在模拟和真实数据集上进行了广泛的实验,以评估该方法与最新方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号