首页> 外文OA文献 >Graph scaling : a technique for automating program construction and deployment in clusterGOP
【2h】

Graph scaling : a technique for automating program construction and deployment in clusterGOP

机译:图缩放:用于在clusterGOP中自动化程序构建和部署的技术

摘要

Program development and resource management are critical issues in large-scaled parallel applications and they raise difficulties for the programmers. Automation tools can benefit the programmer by reducing the time and work required for programming, deploying, and managing parallel applications. In our previous work, we have developed a visual tool, VisualGOP, to help visual construction and automatic mapping of parallel programs to execute on the ClusterGOP platform, which provides a graph-oriented model and the environment for running the parallel applications on clusters. In VisualGOP, the programmer needs to manually build the task interaction graph. This may lead to scalability problem for large applications. In this paper, we propose a graph scaling approach that helps the programmer to develop and deploy a large-scale parallel application minimizing the effort of graph construction, task binding and program deployment. The graph scaling algorithms expand or reduce a task graph to match the specified scale of the program and the hardware architecture, e.g., the problem size, the number of processors and interconnection topology, so as to produce an automatic mapping. An example is used to illustrate the proposed approach and how programmer benefits in the automation tools.
机译:程序开发和资源管理是大规模并行应用程序中的关键问题,它们给程序员带来了困难。自动化工具可以减少编程,部署和管理并行应用程序所需的时间和工作,从而使程序员受益。在之前的工作中,我们开发了可视化工具VisualGOP,以帮助可视化构造和自动映射要在ClusterGOP平台上执行的并行程序,该程序提供了面向图形的模型和在集群上运行并行应用程序的环境。在VisualGOP中,程序员需要手动构建任务交互图。这可能会导致大型应用程序的可伸缩性问题。在本文中,我们提出了一种图形缩放方法,该方法可帮助程序员开发和部署大型并行应用程序,从而最大程度地减少了图形构建,任务绑定和程序部署的工作量。图缩放算法扩展或缩小任务图以匹配程序的指定比例和硬件体系结构,例如问题大小,处理器数量和互连拓扑,以生成自动映射。通过一个示例来说明所提出的方法以及程序员如何在自动化工具中受益。

著录项

  • 作者

    Chan F; Cao J; Sun Y;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号