首页> 外文OA文献 >Time series forecasting by neural networks : a knee point-based multiobjective evolutionary algorithm approach
【2h】

Time series forecasting by neural networks : a knee point-based multiobjective evolutionary algorithm approach

机译:神经网络的时间序列预测:基于拐点的多目标进化算法

摘要

In this paper, we investigate the problem of time series forecasting using single hidden layer feedforward neural networks (SLFNs), which is optimized via multiobjective evolutionary algorithms. By utilizing the adaptive differential evolution (JADE) and the knee point strategy, a nondominated sorting adaptive differential evolution (NSJADE) and its improved version knee point-based NSJADE (KP-NSJADE) are developed for optimizing SLFNs. JADE aiming at refining the search area is introduced in nondominated sorting genetic algorithm II (NSGA-II). The presented NSJADE shows superiority on multimodal problems when compared with NSGA-II. Then NSJADE is applied to train SLFNs for time series forecasting. It is revealed that individuals with better forecasting performance in the whole population gather around the knee point. Therefore, KP-NSJADE is proposed to explore the neighborhood of the knee point in the objective space. And the simulation results of eight popular time series databases illustrate the effectiveness of our proposed algorithm in comparison with several popular algorithms.
机译:在本文中,我们研究了使用单隐藏层前馈神经网络(SLFN)进行时间序列预测的问题,该问题已通过多目标进化算法进行了优化。通过利用自适应差分进化(JADE)和拐点策略,开发了非支配的排序自适应差分进化(NSJADE)及其改进的基于膝点的NSJADE(KP-NSJADE)来优化SLFN。旨在完善搜索区域的JADE被引入非主导排序遗传算法II(NSGA-II)。与NSGA-II相比,本文提出的NSJADE在多峰问题上显示出优越性。然后将NSJADE应用于训练SLFN以进行时间序列预测。结果表明,在整个人群中预测性能更好的个人聚集在拐点附近。因此,提出了KP-NSJADE来探索目标空间中拐点的附近。八个流行的时间序列数据库的仿真结果表明,与几种流行的算法相比,该算法的有效性。

著录项

  • 作者

    Du W; Leung SYS; Kwong CK;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号