首页> 外文会议>Evolutionary Multi-Criterion Optimization; Lecture Notes in Computer Science; 4403 >Multiobjective Evolutionary Neural Networks for Time Series Forecasting
【24h】

Multiobjective Evolutionary Neural Networks for Time Series Forecasting

机译:时间序列预测的多目标进化神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper will investigate the application of multiobjective evolutionary neural networks in time series forecasting. The proposed algorithmic model considers training and validation accuracy as the objectives to be optimized simultaneously, so as to balance the accuracy and generalization of the evolved neural networks. To improve the overall generalization ability for the set of solutions attained by the multiobjective evolutionary optimizer, a simple algorithm to filter possible outliers, which tend to deteriorate the overall performance, is proposed also. Performance comparison with other existing evolutionary neural networks in several time series problems demonstrates the practicality and viability of the proposed time series forecasting model.
机译:本文将研究多目标进化神经网络在时间序列预测中的应用。所提出的算法模型将训练和验证的准确性作为同时要优化的目标,以平衡进化神经网络的准确性和泛化性。为了提高由多目标进化优化器获得的一组解决方案的总体泛化能力,还提出了一种简单的算法,该算法可以过滤可能导致总体性能下降的异常值。与其他现有的进化神经网络在几个时间序列问题上的性能比较证明了所提出的时间序列预测模型的实用性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号