首页> 外文OA文献 >Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates
【2h】

Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates

机译:CFRP叠层加固的钢梁脱胶破坏的有限元模拟

摘要

A steel beam may be strengthened in flexure by bonding a carbon fibre-reinforced polymer (CFRP) plate to the tension face. Such a beam may fail by debonding of the CFRP plate that initiates at one of the plate ends (i.e. plate end debonding) or by debonding that initiates at a local damage (e.g. a crack or concentrated yielding) away from the plate ends (intermediate debonding). This paper presents the first finite element (FE) approach that is capable of accurate predictions of such debonding failures, with particular attention to plate-end debonding. In the proposed FE approach, a mixed-mode cohesive law is employed to depict interfacial behaviour under a combination of normal stresses (i.e. mode-I loading) and shear stresses (i.e. mode-II loading); the interfacial behaviour under pure mode-I loading or pure mode-II loading is represented by bi-linear traction-separation models. Damage initiation is defined using a quadratic strength criterion, and damage evolution is defined using a linear fracture energy-based criterion. Detailed FE models of steel beams tested by previous researchers are presented, and their predictions are shown to be in close agreement with the test results. Using the proposed FE approach, the behaviour of CFRP-strengthened steel beams is examined, indicating that: (1) if the failure is governed by plate end debonding, the use of a CFRP plate with a higher elastic modulus and/or a larger thickness may lead to a lower ultimate load because plate end debonding may then occur earlier; (2) plate end debonding is more likely to occur when a short CFRP plate is used, as is commonly expected; and (3) the failure mode may change to intermediate debonding or other failure modes such as compression flange buckling if a longer plate is used.
机译:通过将碳纤维增强聚合物(CFRP)板粘结到张紧面上,可以增强钢梁的挠曲性。此类光束可能会由于以下原因而失效:在板端之一处开始的CFRP板剥离(即,板端剥离)或在远离板端的局部损坏(例如裂纹或集中屈服)处发起的剥离(中间剥离) )。本文介绍了第一种有限元(FE)方法,该方法能够准确预测此类脱粘失败,尤其要注意板端脱粘。在提出的有限元方法中,采用混合模式内聚规律来描述在正应力(即模式I载荷)和剪应力(即模式II载荷)的组合下的界面行为。纯模式-I载荷或纯模式-II载荷下的界面行为用双线性牵引力-分离模型表示。使用二次强度准则定义破坏开始,并且使用基于线性断裂能的准则定义破坏演变。介绍了以前的研究人员测试过的钢梁的详细有限元模型,并表明它们的预测与测试结果非常吻合。使用提出的有限元方法,检查了CFRP加固钢梁的行为,表明:(1)如果破坏是由板端剥离控制的,则使用具有更高弹性模量和/或更大厚度的CFRP板可能会导致较低的最终载荷,因为板端剥离可能会更早发生; (2)如通常预期的那样,当使用短CFRP板时,板端脱胶的可能性更大。 (3)如果使用更长的板,则失效模式可能会变为中间脱胶或其他失效模式,例如压缩法兰弯曲。

著录项

  • 作者

    Teng JG; Fernando D; Yu T;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号