首页> 外文OA文献 >Codimension-two bifurcations analysis and tracking control on a discrete epidemic model
【2h】

Codimension-two bifurcations analysis and tracking control on a discrete epidemic model

机译:离散流行病模型的余维二分叉分析和跟踪控制

摘要

In this paper, the dynamic behaviors of a discrete epidemic model with a nonlinear incidence rate obtained by Euler method are discussed, which can exhibit the periodic motions and chaotic behaviors under the suitable system parameter conditions. Codimension-two bifurcations of the discrete epidemic model, associated with 1:1 strong resonance, 1:2 strong resonance, 1:3 strong resonance and 1:4 strong resonance, are analyzed by using the bifurcation theorem and the normal form method of maps. Moreover, in order to eliminate the chaotic behavior of the discrete epidemic model, a tracking controller is designed such that the disease disappears gradually. Finally, numerical simulations are obtained by the phase portraits, the maximum Lyapunov exponents diagrams for two different varying parameters in 3-dimension space, the bifurcation diagrams, the computations of Lyapunov exponents and the dynamic response. They not only illustrate the validity of the proposed results, but also display the interesting and complex dynamical behaviors.
机译:本文讨论了一种由欧拉方法获得的具有非线性发生率的离散流行病模型的动力学行为,该模型在适当的系统参数条件下可以表现出周期运动和混沌行为。利用分叉定理和法线图的形式形式分析离散流行病模型的共维分叉,分别与1:1强共振,1:2强共振,1:3强共振和1:4强共振相关。此外,为了消除离散流行模型的混乱行为,设计了跟踪控制器,使疾病逐渐消失。最后,通过相图,二维空间中两个不同参数的最大Lyapunov指数图,分叉图,Lyapunov指数的计算和动态响应,获得了数值模拟。它们不仅说明了所提出结果的有效性,而且还展示了有趣而复杂的动力学行为。

著录项

  • 作者

    Yi N; Zhang Q; Liu P; Lin Y;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号