首页> 外文OA文献 >An associative memory approach to blind signal recovery for SIMO/MIMO systems
【2h】

An associative memory approach to blind signal recovery for SIMO/MIMO systems

机译:一种用于SIMO / MIMO系统的盲信号恢复的关联存储方法

摘要

SIMO (MIMO) stands for single-input-multiple-output (multiple-input-multiple-output) systems, where multiple observed output signals are generated by a single or multiple source signal(s). Our approach is based on a dynamic diversity combiner to effectively combine FIR filtered subchannel signals to recover the original signal(s). The approach is structurally resembling to that of Deterministic Maximum Likelihood, the difference being that it adapts on the combiner parameters, as opposed to subchannel parameters. While our approach implicitly adapts on the FIR recovery filters, the actual implementation is manifested in terms of associative memory models (AMMs): FASIMO/FAMIMO for SIMO/MIMO signal recovery. This work is based on three theoretical foundations: (1) finite-alphabet "exclusiveness" (FAE), (2) FIR signal recovery based on Bezout Identity, and (3) associated memory model (AMM). A "Generalized Bezout Identity" serves as the mathematical foundation for SIMO/MIMO FIR signal recoverability. The approach naturally exploits the (polynomial algebra) property of the subchannels and the "exclusiveness" property of finite-alphabet (FA) inherent in digital communication systems. Theoretical analysis on convergence property, number of attractors, and (optimal) system delays for FASIMO/FAMIMO recovery is provided. This approach exhibits several advantages over the traditional Cross Relation(CR) approaches (based on Bezout null space). For examples, the same AMM model can handle MIMO blind recovery and it significantly alleviates the burden of having to first estimate the channel lengths exactly, as required by the CR. Simulations confirming the theoretical results are provided
机译:SIMO(MIMO)代表单输入多输出(多输入多输出)系统,其中多个观察到的输出信号是由一个或多个源信号生成的。我们的方法基于动态分集组合器,可以有效地组合经过FIR滤波的子信道信号,以恢复原始信号。该方法在结构上类似于确定性最大似然法,不同之处在于它适应组合器参数,而不是子信道参数。尽管我们的方法隐含地适用于FIR恢复滤波器,但实际实现是通过关联存储模型(AMM)来体现的:用于SIMO / MIMO信号恢复的FASIMO / FAMIMO。这项工作基于三个理论基础:(1)有限字母“排他性”(FAE),(2)基于Bezout Identity的FIR信号恢复以及(3)关联内存模型(AMM)。 “通用Bezout身份”是SIMO / MIMO FIR信号可恢复性的数学基础。该方法自然地利用了子信道的(多项式代数)特性和数字通信系统中固有的有限字母(FA)的“排他性”特性。对FASIMO / FAMIMO恢复的收敛特性,吸引子数量和(最佳)系统延迟进行了理论分析。与传统的Cross Relation(CR)方法(基于Bezout空空间)相比,该方法具有一些优势。例如,相同的AMM模型可以处理MIMO盲恢复,并且极大地减轻了必须按照CR要求首先准确估计信道长度的负担。提供了证实理论结果的仿真

著录项

  • 作者

    Kung SY; Zhang XY;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号