首页> 外文OA文献 >Reversed residuals in autoregressive time series analysis
【2h】

Reversed residuals in autoregressive time series analysis

机译:自回归时间序列分析中的反向残差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Both linear and nonlinear time series can have directional features, features which indicate that the series do not maintain identical statistical properties when the direction on the time scale is reversed. The main purpose of the present paper is to develop the analysis of these features and to indicate and illustrate how they can be used for the investigation and modelling of linear or nonlinear autoregressive statistical models. In particular, the aim of the paper is to introduce the idea of reversed residuals and to develop some of their properties. Particular pairs of reversed and ordinary residuals are shown to produce partial autocorrelation coefficients: quadratic types of partial autocorrelation coefficients are introduced to assess dependence associated with nonlinear models which nevertheless have linear autoregressive (Yule-Walker) correlation structures. (kr)
机译:线性和非线性时间序列都可以具有方向特征,这些特征表明当时间标度上的方向相反时,该序列不会保持相同的统计属性。本文的主要目的是发展对这些特征的分析,并指出和说明如何将它们用于线性或非线性自回归统计模型的研究和建模。特别是,本文的目的是介绍反向残差的概念并开发其某些特性。特定的成对的反向残差和普通残差显示为产生局部自相关系数:引入二次类型的局部自相关系数以评估与非线性模型相关的依存关系,而非线性模型仍然具有线性自回归(Yule-Walker)相关结构。 (kr)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号