The effects of extended precision computing and other numerical techniques are evaluated for the Fourier matching method (FMM) acoustic scattering model, initially developed by Assistant Professor D. Benjamin Reeder, CDR/USN (NPS), and Professor Timothy K. Stanton (MIT/WHOI). Theory on acoustic scattering, reverberation, scattering models, conformal mapping, scatterer boundary conditions, floating point arithmetic, computational error, and extended precision computing is presented as a foundation for research development. The paper presents an assessment of the effects of numerical techniques on model output with the initial expectation of obtaining a more accurate, converged solution at higher frequencies, higher modal combinations, and greater eccentricities of scatterer shape. Comparisons to results from Reeder and Stanton (2004) demonstrate effects of executed techniques. Analysis includes an evaluation of the relationship between variable precision settings and computational time, gains in the useful frequency regime of the FMM, and numerical analysis benefits. Demonstrated techniques confirm that increased precision has a positive effect on model performance. The utility of other numerical techniques is discussed, and limitations of current computer systems and other shortfalls are illustrated. A feasibility assessment for Navy use of the FMM and recommendations for further improvements to the FMM are included.
展开▼
机译:傅立叶匹配方法(FMM)声散射模型的评估采用了扩展精度计算和其他数值技术,该模型最初由CDR / USN(NPS)助理教授D. Benjamin Reeder和Timothy K. Stanton教授(MIT / WHOI)。提出了有关声散射,混响,散射模型,共形映射,散射边界条件,浮点算法,计算误差和扩展精度计算的理论,作为研究发展的基础。本文提出了对数值技术对模型输出的影响的评估,最初期望在更高的频率,更高的模态组合和更大的散射体形状偏心率下获得更准确,收敛的解。与Reeder和Stanton(2004)的结果进行比较,证明了执行技术的效果。分析包括评估可变精度设置和计算时间之间的关系,FMM的有用频率范围中的收益以及数值分析的好处。演示技术证实了提高精度对模型性能具有积极影响。讨论了其他数值技术的实用性,并说明了当前计算机系统的局限性和其他不足。包括海军使用FMM的可行性评估以及对FMM进行进一步改进的建议。
展开▼