首页> 外文OA文献 >A fully automated method of locating building shadows for aerosol optical depth calculations in high-resolution satellite imagery
【2h】

A fully automated method of locating building shadows for aerosol optical depth calculations in high-resolution satellite imagery

机译:在高分辨率卫星图像中定位建筑物阴影的气溶胶光学深度计算的全自动方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vincent (2006) developed a technique for remotely measuring Aerosol Optical Depth (AOD) using commercial high-resolution satellite imagery. This technique measured the radiance difference between a building shadow and an adjacent sunlit region with the same surface reflectance to calculate Total Optical Depth (TOD). AOD is then determined by subtracting Rayleigh scattering from TOD. The procedure for making this calculation was time consuming, particularly locating suitable shadows within the region of interest. This paper outlines a fully automated method of performing the AOD calculation and examining shadow properties. The automated method relies on high-resolution Digital Surface Model (DSM) data collected using a Light Detection and Ranging (LIDAR) sensor coupled with sun and satellite geometry to identify shadow regions. Configuration settings allowed for specific regions in the shadow and sunlit area to be selected before determining their respective radiances. Finally, a technique for aligning the satellite and DSM pixels was developed to correct for small differences between the datasets. Results from the automated method were compared with AERONET data for validation. The automated method using WorldView-1 and QuickBird imagery worked best at Solar Village, Saudi Arabia and an area northeast of Washington, D.C., which included the Goddard Space Flight Center. Testing of IKONOS multispectral imagery suggested the resolution is inadequate in urban settings. Testing in areas that included downtown regions in Houston, TX and Baltimore, MD identified weaknesses in the alignment algorithm.
机译:Vincent(2006)开发了一种使用商业高分辨率卫星图像远程测量气溶胶光学深度(AOD)的技术。这项技术测量了建筑物阴影与具有相同表面反射率的相邻阳光照射区域之间的辐射差异,以计算总光学深度(TOD)。然后通过从TOD中减去瑞利散射来确定AOD。进行此计算的过程非常耗时,特别是在感兴趣区域内找到合适的阴影。本文概述了执行AOD计算和检查阴影属性的全自动方法。自动化方法依赖于高分辨率的数字表面模型(DSM)数据,该数据是使用光检测和测距(LIDAR)传感器与太阳和卫星几何形状相结合来识别阴影区域的。配置设置允许在确定阴影区域和日光照射区域的特定辐射之前选择它们的特定区域。最后,开发了一种将卫星和DSM像素对齐的技术,以纠正数据集之间的细微差异。将自动方法的结果与AERONET数据进行比较以进行验证。使用WorldView-1和QuickBird影像的自动方法在沙特阿拉伯的太阳村和华盛顿特区东北部地区,包括戈达德太空飞行中心,效果最好。 IKONOS多光谱图像的测试表明,在城市环境中分辨率不足。在包括德克萨斯州休斯顿和马里兰州巴尔的摩市中心地区的区域进行的测试确定了对准算法的弱点。

著录项

  • 作者

    Belson Brian L.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号