首页> 外文OA文献 >Unstructured high-order galerkin-temporal-boundary methods for the klein-gordon equation with non-reflecting boundary conditions
【2h】

Unstructured high-order galerkin-temporal-boundary methods for the klein-gordon equation with non-reflecting boundary conditions

机译:带有非反射边界条件的klein-gordon方程的非结构化高阶Galerkin-时间边界方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A reduced shallow water model under constant, non-zero advection in infinite domains is considered. High-Order Givoli-Neta (G-N) and Hagstrom-Hariharan (H-H) non-reflecting boundary conditions (NRBCs) are introduced to create a finite computational space and solved using a spectral element formulation with high-order time integration. Numerical examples are used to demonstrate the synergy of using high-order spatial, time and boundary discretizations. Several alternatives are also presented for solving open domain problems. These alternatives include adjustments to the G-N NRBC based on physical arguments as well as formulating the boundary condition for arbitrary domains using unstructured grids. The H-H polar NRBC is also formulated in an unstructured grid setting and extended to include dispersive effects. Results show that by balancing all numerical errors involved, high-order accuracy can be achieved for unbounded channel problems. Further, the adjustments to the G-N and H-H NRBCs to operate in an unstructured grid setting are shown to significantly reduce errors over first order non-reflecting boundary schemes when operating in an open domain configuration.
机译:考虑了在无限域中恒定,非零对流下的简化浅水模型。引入高阶Givoli-Neta(G-N)和Hagstrom-Hariharan(H-H)非反射边界条件(NRBC)来创建有限的计算空间,并使用具有高阶时间积分的谱元素公式进行求解。数值示例用于说明使用高阶空间,时间和边界离散化的协同作用。还提出了几种解决开放域问题的方法。这些替代方案包括根据物理参数对G-N NRBC进行调整,以及使用非结构化网格为任意域制定边界条件。 H-H极性NRBC也以非结构化网格设置配制,并扩展到包括色散效应。结果表明,通过平衡所有涉及的数值误差,可以解决无边界通道问题的高阶精度。此外,示出了对在非结构化网格设置中操作的G-N和H-H NRBC的调整,以在开放域配置中操作时,与一阶非反射边界方案相比显着减少了误差。

著录项

  • 作者

    Lindquist Joseph M.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号