首页> 外文OA文献 >The formation of the Panguna Porphyry copper deposit, Bougainville, Papua New Guinea: with an appendix on the Frieda porphyry copper prospect, New Guinea.
【2h】

The formation of the Panguna Porphyry copper deposit, Bougainville, Papua New Guinea: with an appendix on the Frieda porphyry copper prospect, New Guinea.

机译:巴布亚新几内亚布干维尔的Panguna斑岩铜矿床的形成:附有新几内亚Frieda斑岩铜矿的附录。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various hydrothermal processes have been suggested as importantudin the formation of porphyry coppers, e.g. orthomagmatic evolution ofudsalt-rich liquid, condensation of salt-rich liquid from magmaticudvapour, convection of groundwater driven by magmatic heat, boiling ofudgroundwater. A fluid inclusion study based on detailed two-dimensionaludsampling indicates that all of these processes appear to have contributedudto the evolution of the Panguna deposit, but suggests that copperudwas deposited mainly by salt-rich liquid expelled direct from the magma.udThe deposit formed at the southern contact of the Kaverong QuartzudDiorite with the Panguna Andesite. Three smaller porphyritic stocks,udthe Biotite Granodiorite, the Leucocratic Quartz Diorite and the BiuroudGranodiorite, were emplaced in the deposit during mineralisation, whichudcomprised three phases of hydrothermal activity. The·first, phase A,udtook place when the southern part of the Kaverong Quartz Diorite was atud0 temperatures over 700 c. The Panguna Andesite was pervasively alteredudto an amphibole-magnetite-plagioclase assemblage, upon which was superimposedudcopper mineralisation and associated K-silicate alteration. Theudlimit of copper deposition and quartz veining to the southwest coincidesudclosely with a zone in which salt-rich liquid was cooled and diluted.udA pyritic halo parallels this zone. The system cooled below 400°C beforeudundergoing renewed mineralisation at temperatures over 400°C in twoudapproximately concurrent but separate phases B and c. These phases wereudaccompanied by the intrusion of porphyritic stocks. Phase B formed audwell-defined cell bounded by a pyritic halo and centred on theudLeucocratic Quartz Diorite. Phase C was expressed as veining of theudBiotite Granodiorite, the Biuro Granodiorite and the area between them. Copper mineralisation took place at a pressure near 300 bars andudat temperatures between 350°C and 700°c or higher. Cu,Fe sulphides,udquartz, anhydrite and hematite in veins, and potassium silicate alterationudwere formed from boiling salt-rich liquid, of density 1.2 - 1.5udg/cm3, mostly of magmatic origin. The composition of these liquidsud(which nucleated both KCl and NaCl in fluid inclusions) in terms of theudsystem NaCl-KCl-H2o varied between 76% salts (60% NaCl, 16% KCl) andud46% salts (30% NaCl, 16% KCl) by weight. Other liquids, apparentlyudmore dilute, nucleated only NaCl. The salt-rich liquids also containedudFe, Ca and S, and minor quantities of Mg, Cu, Mn and zn. A Cu concentrationudtration of 1900 ppm has been estimated in one liquid. The atomic K/Naudratios of salt-rich liquids from three principal phases of veinudmineralisation and from quartz phenocrysts conformed to a single trend,udincreasing from 0.17 to 0.46 as the NaCl content decreased.udGroundwater, mainly of less than 5% salinity, inundated the orebodyudbetween phase A and phases B and c, and again after phases B and c, atudtemperatures below 400 c. Groundwater deposited quartz-pyrite andudprobably pyrite-clay and sphalerite-pyrite veins at temperatures nearud300°C and caused local phyllic alteration. Given a hydrostatic pressureudregime in the groundwater system, the depth of formation was near 3 km.udFluids of groundwater composition, trapped as inclusions at orudabove their critical points, seem to bound the. regions in which twoudfluids coexisted during phases A and B, and possibly c. The evolutionudof fluid compositions and phase properties across the two-phase region isudconsistent with the predicted evolution of boiling salt-rich liquidudexpelled unsaturated from the magma, cooled to saturation and supersaturationudby 500°c, then cooled and diluted by mixing with salt-richudliquid formed by the concentration of groundwater (as high as 45% salts) by boiling. The salt-rich liquids were unsaturated near 430°C, and atudlower temperatures the liquid and gas compositions converged to theudcritical composition at the boundary. Pressures fell sharply fromudlithostatic between the magma and the zone of supersaturated liquidsudof the ore-zone, and were hydrostatic in the lower-temperatureudunsaturated fluids. In the zone of supersaturation, pressures may haveudbeen lower than in the groundwater. Salt-rich liquid was pumped intoudthe ore-zone by the lithostatic-hydrostatic pressure difference, thenuddescended through the ore-zone because of its density.udThe transport of Fe and possibly CU in the vapour is insignificantudunder porphyry copper conditions, but Zn and Mo may undergo signific·antudvapour transport. This may explain the separation of zn and Mo from Feudand Cu in porphyry copper systems.udThe absence of major sericite alteration (as opposed to theudK-feldspar commonly associated with the salt-rich liquid) suggests thatudboiling removed excess HCl formed during the alteration of plagioclaseudand amphibole to biotite. The sulphate in anhydrite deposited by saltrichudliquid probably originated from the decomposition of SOz. Thisudmechanism does not account for increased sulphide deposition below 500°Cudbecause the liquid maintained a constant S0z:H2S ratio but the reductionudof SOz by Fe 2+ may have become important at lower temperatures. The highudoxidation state of magmatic fluids during copper mineralisation was dueudto the loss of H2 from the magma in those early-evolved volatiles thatudformed the amphibole-bearing assemblage.udChalcopyrites have a .834s range of -1.6 to 1.5%., pyrites +0.5 toud3.l%and anhydrites +7.6 to 16.0%. The salt-rich liquid that depositedudanhydrite and chalcopyrite had o34s = +1%.The complexity of the hydrothermaludprocesses indicates that there was not a simple relationshipudbetween these values and the 834s values of sulphur in the magma.
机译:已经提出了各种水热过程,对于斑岩铜的形成是重要的。富铀液体的正岩浆演化,岩浆蒸汽中富盐液体的冷凝,岩浆热驱动的地下水对流,地下水的沸腾。基于详细的二维取样分析的流体包裹体研究表明,所有这些过程似乎都对Panguna矿床的演化做出了贡献,但表明铜 uds主要是由岩浆直接排出的富含盐分的液体所沉积。 ud矿床形成于卡弗龙石英 udDiorite与Panguna安山岩的南部接触处。在矿化过程中,在矿床中放置了三种较小的斑岩性储层,即黑云母花岗闪长岩,白云母石英闪长岩和Biuro ud粒岗闪长岩,其中包括热液活动的三个阶段。当Kaverong石英Diorite的南部处于700℃以上的温度时,A是第一阶段。潘古纳山脉的安山岩被普遍地改变成角闪石-磁铁矿-斜长石组合,其上被叠加了 udcopper矿化作用和相关的钾硅酸盐改变。西南的铜沉积和石英脉的超限与冷却和稀释富含盐的液体的区域几乎重合。黄铁矿晕与该区域平行。该系统冷却至400°C以下,然后在两个以上同时但分开的B相和c相中经历了超过400°C的温度下的重新矿化。这些阶段是由斑状岩侵入引起的。 B相形成了一个由黄铁矿晕圈界定并定居在共焦石英闪长石上的 udwell定义的晶胞。 C相表示为 ud黑云母花岗闪长岩,Biuro花岗闪长岩及其之间的区域。铜矿化发生在300巴附近的压力和350°C至700°C或更高的温度范围内。沸腾的富盐液体密度为1.2-1.5 udg / cm3,主要是岩浆成因,形成脉状的Cu,Fe硫化物,石英,硬石膏和赤铁矿以及硅酸钾蚀变。这些液体的组成(在流体包裹体中使KCl和NaCl都成核)在NaCl-KCl-H2o体系中变化,其中盐的含量介于76%(60%NaCl,16%KCl)和ud46%的盐之间(30重量百分比为NaCl,16%KCl)。显然,其他液体稀释后仅能使NaCl成核。富含盐的液体还含有udFe,Ca和S,以及少量的Mg,Cu,Mn和zn。据估计一种液体中的铜浓度为1900 ppm。来自NaCl含量降低的三个主要阶段的静脉去矿化和石英表晶的富盐液体的原子K / Na udratios符合单一趋势,从0.17增加到0.46。 ud地下水。盐度%,淹没在A相与B和c相之间的矿体,并在B和c相之后,在低于400℃的温度下浸没。地下水在 ud300°C附近的温度下沉积石英黄铁矿和可能的黄铁矿粘土和闪锌矿-黄铁矿脉,并引起局部叶面蚀变。考虑到地下水系统中的静水压力 udregime,其形成深度接近3 km。 ud以夹杂物的形式夹杂在其临界点或以上的地下水成分的流体似乎束缚了它们。在阶段A和阶段B可能同时存在两个 udfluids的区域。跨两相区域的流体成分和相性质的演变 ud与沸腾富盐液体的预测演变从岩浆中驱除不饱和物,冷却至饱和和过饱和 udby 500°c,然后冷却并稀释通过与沸腾浓缩的地下水(盐含量高达45%)形成的富盐/高盐液体混合。富含盐的液体在430°C附近是不饱和的,并且在较低的温度下,液体和气体成分在边界处会聚为临界成分。压力从岩浆和过饱和液体区之间的超静压力矿石区的压力急剧下降,而在较低温度不饱和流体中的流体静压力。在过饱和区,压力可能低于地下水。富含盐的液体通过静水压-静水压差被泵入矿石区,然后由于其密度而下降穿过矿石区。 ud在斑岩铜下蒸气中Fe和可能的CU的迁移微不足道。条件,但是Zn和Mo可能会发生重要的蒸汽迁移。这可以解释斑岩型铜系统中zn和mo从Fe udand Cu中的分离。 ud缺少主要的绢云母蚀变(与通常与富盐液体相关的 udK长石相反)表明 udbiling去除了多余的在斜长石 ud和闪石变成黑云母的过程中形成了HCl。富盐/稀液沉积的硬石膏中的硫酸盐可能源自SOz的分解。该机理不能解释硫化物在500°C以下沉积的增加,因为液体保持恒定的S0z:H2S比,但是在较低温度下Fe 2+对SOz的还原可能变得很重要。铜矿化过程中岩浆流体的高过氧化状态是由于岩浆中H2的损失导致的,这些早期演化的挥发物使含闪石的组合物变形。 ud黄铜矿的.834s范围为-1.6至1.5% ,黄铁矿+0.5至 ud3.1。%,无水石膏+7.6至16.0%。沉积硬石膏和黄铜矿的富盐液体的o34s = + 1%。水热过程的复杂性表明,这些值与岩浆中硫的834s值之间没有简单的关系。

著录项

  • 作者

    Eastoe CJ;

  • 作者单位
  • 年度 1979
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号