首页> 外文OA文献 >Toward realistic wireless cooperative communications networks
【2h】

Toward realistic wireless cooperative communications networks

机译:迈向现实的无线合作通信网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, the space-time block codes (STBCs) were suggested to use in wireless relayingudnetworks (WRNs), denoted as distributed-STBCs (D-STBCs). This is to exploit effectively theudspatial diversity and hence improve the link reliability. In addition, this usage may increaseudthe network’s spectrum efficiency as it allows concurrent transmission from the relayingudnodes. However, these networks encounter numerous issues that limit their wide practicaluduse. This thesis addresses three critical issues of WRNs, and proposes solutions for each partudindividually.udIn Part I, WRNs are considered under imperfect synchronization. In the literature, most researchudtends to assume perfect synchronization among the cooperative relays. Unfortunately,udthis level of synchronization is almost impossible to achieve in real communication networks,udand this introduces a significant performance degradation if imperfect synchronization isudpresent in the network. This part includes mathematical models that are derived for WRNs,udeither one-way or two-way, under imperfect synchronisation conditions. Unlike existingudmodels, this model provides a simple method of evaluating the problem for variant networkudconfigurations. In addition, this model considers the WRNs with N relays, each is equippedudwith Ra antennas, where N, Ra ∈ N+. With respect to current literature, the contributions ofudthis part are : (1) both the existing PIC and SIC based detectors, which were proposed forudspecific network configurations instances, are extended here to work with the general model.ud(2) an enhanced interference cancellation based detector (EIC) is proposed. These proposeduddetectors shows significant performance improvement compared to the conventional detectorudunder imperfect synchronisation conditions. In addition, the proposed EIC detector providesudbetter improvement due to the designed interference cancellation process. It reducesudthe reliance on low-performance symbols and it benefits from interference components ofudcurrently-detected symbols using a modified maximum likelihood (ML) scheme. Accordingly,udan extra performance improvement is achieved, particularly in the first iteration.udPart II considers the issue of designing D-STBCs for WRNs with an arbitrary number ofudrelays. It has been shown that the reliability of WRNs increases by adding more relays as a result of more communication paths becoming available. Unlike most existing D-STBCs, this part proposes two high rate coding schemes to accommodate an arbitrary number ofudrelays, while retaining low decoding complexity at the destination. The first scheme, full-rateuddistributed space-time block coded-joint transmit/receive antenna diversity (D-STBC-JTRD),udis proposed for AF WRNs. Its code rate is independent of the number of relays and hence noudcode rate loss is incurred as the relays number increases. In addition, this scheme deploysudthe same encoding matrices at every relay; this eliminates the need for additional networkudoverhead to coordinate the code generation by the relays. In other words, there is no needudto interrupt the transmission if a relay has been up/down. The second scheme aims to finduda flexible trade-off between reliability and code-rate that can be offered by DF networks.udTowards this end, a method to construct a D-STBC that is combined with spatial modulationud(SM), denoted as D-STBC-SM, is proposed. This method is not restricted to a specific numberudof relays and can be constructed as necessary. In addition, a novel adaptive transmissionudprotocol that uses the constructed codes, is proposed to achieve higher space diversity gain,udeven with relays equipped with a single antenna. Unlike most existing schemes, this protocoludoffers a throughput that increases as the number of relays increases. Moreover, the offeredudthroughput is achieved using the same total average transmit energy, as only N0 of the Nudavailable participating relays are active at any given time.udIn Part III, the multi-user interference of WRNs is considered. Two transmission protocolsudwith an interference cancellation scheme are proposed: the concurrentS−R−D-PICR,D protocoludfor DF WRNs and the concurrentS−R−D-PICD protocol for AF WRNs. Unlike existingudprotocols, these protocols allow the concurrent transmission in both phases of the transmission.udThus, high spectral efficiency is offered while maintaining low decoding complexity.udThis low decoding complexity is maintained due to the adaptation of the partial interferenceudcancellation group decoding (PICGD) approach for WRNs, which was initially proposed byudGuo, et al., for point-to-point (P2P) communication link. For a WRN consisting of J usersudequipped each with Ja-antenna, a single half duplex (HD) Ra-antenna relay, and M-antennauddestination, the concurrentS−R−D-PICR,D protocol achieves the interference-free diversityudgain (i.e., Ra × min {Ja,M}) without imposing any conditions on a node’s antenna number.udThe interference-free is the diversity gain achieved, assuming that each user in the networkudis transmitting solely without experiencing any interference from other users, hence it isudconsidered as the natural upper bound of the diversity gain in multi-user WRNs. Similar toudmost exiting protocols, this protocol requires the CSI of the users-relay links at the relay. Inudcontrast, the concurrentS−R−D-PICR,D protocol achieves a diversity gain of Ja ×M, given that Ra > 8, while the CSI is required only at the destination. Although the diversity’s upper bound is not achieved, this protocol uses a simple relay as no CSI or encoding is requiredudat the relay. In addition, and unlike the existing protocols, the achievable diversity gain isuddetermined by both Ja and M and it is not sacrificed while J is increased. This part alsoudestablishes sufficient conditions for an STBC to achieve the prior mentioned diversity gains,udwhen the PICGD approach is employed by multi-users WRNs.
机译:最近,空时分组码(STBC)被建议用于无线中继 udnetworks(WRN),称为分布式STBC(D-STBC)。这是为了有效地利用空间多样性,从而提高链路可靠性。另外,这种用法可以提高网络的频谱效率,因为它允许从中继节点进行并发传输。但是,这些网络遇到许多问题,限制了它们的广泛实用性。本文解决了WRN的三个关键问题,并针对每个部分提出了解决方案。 ud在第一部分中,WRN被认为是不完全同步的。在文献中,大多数研究都假定协作中继之间具有完美的同步性。不幸的是,在实际的通信网络中几乎不可能达到这种同步级别,并且如果网络中不完美的同步会导致性能显着下降。这部分包括在不完善的同步条件下针对WRN(单向或双向)导出的数学模型。与现有的 ud模型不同,此模型提供了一种评估变量网络 ud配置问题的简单方法。此外,该模型考虑了具有N个中继的WRN,每个中继都配备了Ra天线,其中N,Ra∈N +。关于当前文献,这部分的贡献是:(1)为特定的网络配置实例而提出的现有基于PIC和SIC的检测器都在这里扩展以与通用模型一起使用。 ud(2 )提出了一种增强的基于干扰消除的检测器(EIC)。与不完善的同步条件下的常规检测器相比,这些建议的检测器显示出显着的性能改进。此外,由于设计了干扰消除过程,因此建议的EIC检测器可提供更好的改善。它减少了对低性能符号的依赖,并受益于使用改进的最大似然(ML)方案的当前检测符号的干扰分量。因此, udan可以实现额外的性能改进,尤其是在第一次迭代中。 udPart II考虑了为具有任意数量 udrelays的WRN设计D-STBC的问题。已经显示出,由于更多的通信路径变得可用,通过添加更多的中继来提高WRN的可靠性。与大多数现有的D-STBC不同,本部分提出了两种高速率编码方案,可容纳任意数量的 udrelay,同时在目的地保留较低的解码复杂度。第一种方案是针对AF WRN提出的全速率未分配的空时分组编码联合发射/接收天线分集(D-STBC-JTRD)。它的编码率与中继器数量无关,因此,随着中继器数量的增加,不会导致 udcode速率损失。另外,该方案在每个中继上部署相同的编码矩阵。这消除了额外的网络开销来协调中继器生成代码的需要。换句话说,如果继电器已打开/关闭,则无需中断传输。第二种方案旨在找到DF网络可以提供的可靠性和码率之间的灵活折衷。为此,一种构建与空间调制相结合的D-STBC的方法 ud(SM)提出了以D-STBC-SM表示。此方法不限于特定数量的继电器,可以根据需要构造。此外,提出了一种新颖的自适应传输 udprotocol,它使用构造的代码,即使配备了单个天线的继电器也可以实现更高的空间分集增益。与大多数现有方案不同,此协议的吞吐量随着中继数量的增加而增加。此外,由于在任何给定时间只有N个可使用的参与中继中的N0个处于活动状态,因此使用相同的总平均发射能量即可达到所提供的 udthrough。 ud在第三部分中,考虑了WRN的多用户干扰。提出了两种传输协议具有干扰消除方案的传输协议:DF WRN的并发SR-R-D-PICR,D协议 ud和AF WRN的并发SR-R-D-PICD协议。与现有的 udprotocol不同,这些协议允许在传输的两个阶段同时进行传输。 ud因此,在保持较低解码复杂度的同时提供了高频谱效率。 ud由于部分干扰 udcancellation组的适应,因此维持了较低的解码复杂性 udGuo等人最初针对点对点(P2P)通信链路提出了WRN的解码(PICGD)方法。对于由J个用户各自配备Ja天线,一个半双工(HD)Ra天线中继和M个天线目的地组成的WRN,并发S-R-D-PICR,D协议可实现无干扰多样性 udgain(即Ra×min {Ja ud无干扰是所获得的分集增益,假设网络中的每个用户仅在传输时没有受到其他用户的任何干扰,因此,它被认为是多用户WRN中分集增益的自然上限。与最现有的协议类似,此协议需要中继站上用户中继链路的CSI。在相反的情况下,考虑到Ra> 8,并发的S-R-D-PICR,D协议实现Ja×M的分集增益,而CSI仅在目的地是必需的。尽管没有达到多样性的上限,但是该协议使用简单的中继,因为不需要CSI或编码中继。另外,与现有协议不同的是,可实现的分集增益由Ja和M共同确定,并且在J增加时不会牺牲。当多用户WRN使用PICGD方法时,这部分还为STBC建立了实现前述分集增益的充分条件。

著录项

  • 作者

    El Astal MTO;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号