首页> 外文OA文献 >Development of a cyclone rice dryer
【2h】

Development of a cyclone rice dryer

机译:开发旋风式水稻烘干机

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis evaluates the suitability of a cyclone dryer for the drying of paddy (rice grain).udThe design aim is to reduce the moisture content of paddy from a fresh harvest level ofud33% dry-basis to a more manageable level of 22% of dry basis, and to replace alludclassical methods of drying. The cyclone dryer consists of a cylindrical tower containinguda series of inverted conical baffles with central orifices that divide the tower intoudchambers. The moist particulate matter is fed into a stream of hot, dry air which entersudtangentially at the base of the tower, creating a rotating flow within the dryer. The centraludvortex and through-flow jet transport the particles upwards from chamber to chamberuduntil discharged tangentially at the top. Recirculation of flow within the chambersudlengthens the particle residence timeudSingle-phase numerical calculations with the commercial RANS-based ComputationaludFluid Dynamics (CFD) code CFX 5.7 are used for flow field and pressure dropudpredictions. Experimental observations in a small scale laboratory model are used forudvalidation. Useful descriptions of the axial and tangential velocity distributions areudobtained, and the pressure drop across the cyclone dryer chamber is predicted to aboutud20% accuracy.udParticle residence time in the laboratory model cyclone dryer is measured by the pulseudtracer stimulus response technique. Observations using paddy grain and spherical silicaudgel particles show the mean residence time to vary quadratically with particleudconcentration. The residence time distribution (RTD) is explained well by a tank-in-seriesudmodel. Numerical predictions of particle residence time obtained from one-way coupledudparticle transport modelling without particle dispersion using a Lagrangian/Eulerianudapproach produce RTDs differing significantly from the experimental observations.udHowever, the trends of mean residence time variations in response to changes in inlet airudvelocity and number of cyclone chambers are correctly predicted. udSingle-pass drying tests with paddy grain demonstrate maximum moisture reductions ofud2.6-6.5% dry-basis obtained at inlet air temperatures of 82-89 °C and paddy grain feedudrate of 0.03 kg/s. The specific energy consumption (SPEC) varies between 7.5-20.5udMJ/kg of water evaporated, depending on the initial moisture content of paddy grain.udCompared with fluidised bed and spouted bed paddy dryers employing 50-70% exhaustudair recycling, the cyclone dryer gives a lower moisture reduction and a higher SPEC. Thisudindicates that practical application of the model-scale cyclone dryer would require multipassudoperation with exhaust air recycling to be sufficiently economic.udMulti-pass laboratory tests show three-pass drying in a four-chamber cyclone dryer withudinlet air temperature of about 80°C and 0.03 kg/s paddy grain feed rate to reduce theudmoisture content of paddy grain by about 11% dry-basis, with an SPEC of 13 MJ/kg ofudwater evaporated. Recycling about 90% of the air would give a 70-75% reduction inudSPEC compared to non-recycled air operation, and 3.5-4 MJ/kg water evaporated. This isudcomparable to fluidised bed paddy dryer operation for similar initial moisture content ofudthe paddy grain.udNumerical simulations of silica gel particle drying based on two-way coupled particleudtransport modelling with a Lagrangian/Eulerian approach are also reported. Theudsimulations consistently overpredict the moisture and heat transfer observedudexperimentally using silica gel particle 3.25 mm in average diameter. As the meanudparticle residence time was underpredicted , it is concluded that the water evaporationudmodel used here gives a much higher moisture transfer rate than that observedudexperimentally.udComputational studies of the increase in residence time with geometric scale-up of theuddryer indicate that a commercial scale unit small enough to be field portable couldudachieve the desired moisture reduction of paddy grain with single pass operation.
机译:本论文评估了旋风干燥机对稻谷(稻谷)干燥的适用性。 ud设计目的是将稻谷的水分含量从新鲜收获水平( u33%干基)降低到更易于管理的水平22 %的干燥基础,并取代所有经典的干燥方法。旋风式干燥机由一个圆柱形塔组成,该塔包含一系列倒置的锥形折流板,这些折流板的中心孔将塔分成多个室。潮湿的颗粒物被送入热的干燥空气流,该空气流切向进入塔的底部,从而在干燥机内产生旋转流。中心涡流和气流射流将颗粒从一个腔室向上传输到另一个腔室,直到在顶部切向排出。腔室内的流体再循环延长了颗粒的停留时间 ud使用基于RANS的商业计算 udFluid动力学(CFD)代码CFX 5.7的单相数值计算可用于流场和压降预测。小型实验室模型中的实验观察用于验证。得出了有用的轴向和切向速度分布的描述,并预测了旋风干燥机腔内的压降精度约为 ud20%。 ud通过脉冲 udtracer刺激响应来测量实验室模型旋风干燥机中的颗粒停留时间技术。使用稻谷和球形硅土 /预算颗粒的观测结果表明,平均停留时间随颗粒超浓度的变化呈二次方变化。驻留时间分布(RTD)通过串联油箱 udmodel进行了很好的解释。使用Lagrangian / Eulerian udapproach从无颗粒分散的单向耦合ud粒子传输模型获得的颗粒停留时间的数值预测产生的RTD与实验观察值显着不同。正确预测了进气风速和旋风室的数量。 ud对稻谷的单程干燥试验表明,在82-89°C的进气温度和0.03 kg / s的稻谷进给率下,最大水分减少量为 ud2.6-6.5%干基。单位能耗(SPEC)在7.5-20.5 udMJ / kg蒸发的水之间变化,具体取决于稻谷谷物的初始水分含量。 ud与流化床和喷射床稻谷干燥机采用50-70%的废气 udair回收相比,旋风干燥机的水分减少量较低,而SPEC值较高。这表明模型型旋风干燥机的实际应用将需要多次通过使用废气再循环才足够经济。 ud多次通过实验室测试显示,在四室旋风干燥器中采用三遍干燥且空气温度为 udinlet大约80°C的温度和0.03 kg / s的稻谷进料速率可将稻谷的水分含量降低约11%的干基,而SPEC为13 MJ / kg的水分蒸发。与非循环空气操作相比,循环使用约90%的空气会使 udSPEC降低70-75%,蒸发的水量为3.5-4 MJ / kg。这与流化床稻谷干燥机的运行类似,这与稻谷颗粒的初始水分含量相似。该模拟始终过度预测使用平均直径3.25毫米的硅胶颗粒在实验中观察到的水分和热传递。由于平均颗粒停留时间的预测不足,因此得出的结论是,此处使用的水蒸发模型比实验观察到的具有更高的水分传递速率。计算停留时间随着几何尺寸的增大而增加的计算研究。 uddryer表示,如果商业规模的单位小到可以现场携带,就可以通过单遍操作实现水稻所需的水分减少。

著录项

  • 作者

    Bunyawanichakul P;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号