首页> 外文OA文献 >A shifted hyperbolic augmented Lagrangian-based artificial fish two swarm algorithm with guaranteed convergence for constrained global optimization
【2h】

A shifted hyperbolic augmented Lagrangian-based artificial fish two swarm algorithm with guaranteed convergence for constrained global optimization

机译:约束收敛全局最优的移位双曲增强拉格朗日人工鱼二群算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-basedalgorithm for non-convex constrained global optimization problems. Convergence to an ε-global minimizeris proved. At each iteration k, the algorithm requires the ε(k)-global minimization of a boundconstrained optimization subproblem, where ε(k) → ε. The subproblems are solved by a stochasticpopulation-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy.To enhance the speed of convergence, the algorithm invokes the Nelder–Mead local search with a dynamicallydefined probability. Numerical experiments with benchmark functions and engineering designproblems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangiancompares favorably with other deterministic and stochastic penalty-based methods.
机译:本文提出了一种移位的双曲罚函数,并针对非凸约束全局优化问题提出了一种基于增强拉格朗日算法。证明了收敛到ε全局极小值。在每次迭代k时,该算法都需要对有界约束的优化子问题进行ε(k)全局最小化,其中ε(k)→ε。通过基于随机种群的元启发式算法解决子问题,该方法基于人工鱼群范式和两群策略。为了提高收敛速度,该算法以动态定义的概率调用Nelder-Mead局部搜索。提出了具有基准功能和工程设计问题的数值实验。结果表明,提出的移位双曲增广型Lagrangian与其他基于确定性和随机惩罚的方法相比具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号