首页> 外文OA文献 >Diamond condition for commuting adjacency matrices of directed and undirected graphs
【2h】

Diamond condition for commuting adjacency matrices of directed and undirected graphs

机译:换向有向图和无向图的邻接矩阵的菱形条件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the context of the stability analysis of interdependent networks through the eigenvalue evaluation of theirudadjacency matrices, we characterize algebraically and also geometrically necessary and sufficient conditions for the adjacencyudmatrices of directed and undirected graphs to commute. We alsouddiscuss the problem of communicating the concepts, the theorems,udand the results to a non-mathematical audience, and moreudgenerally across different disciplinary domains, as one of theudfundamental challenges faced by the Internet Science community.udThus, the paper provides much more background, discussion, anduddetail than would normally be found in a purely mathematicaludpublication, for which the proof of the diamond condition wouldudrequire only a few lines. Graphical visualization, examples,uddiscussion of important steps in the proof and of the diamondudcondition itself as it applies to graphs whose adjacency matricesudcommute are provided. The paper also discusses interdependentudgraphs and applies the results on commuting adjacency matricesudto study when the interconnection matrix encoding links betweenudtwo disjoint graphs commutes with the adjacency matrix of theuddisjoint union of the two graphs. Expected applications are inudthe design and analysis of interdependent networks.
机译:在通过相互依存矩阵的特征值评估相互依赖的网络的稳定性的背景下,我们表征了有向图和邻接图的通向矩阵的代数和几何上必要和充分的条件。我们还讨论了将概念,定理,结果和结果传达给非数学的读者,以及更多地/跨学科地跨学科领域进行沟通的问题,这是互联网科学界面临的“根本挑战”。 ,本文提供的背景,讨论和详细信息要比纯数学的出版物中通常提供的更多,因此,钻石条件的证明仅需要几行。图形可视化,示例,证明中的重要步骤的讨论以及菱形本身的状况,因为它适用于提供了邻接矩阵 udcommute的图。本文还讨论了相互依存的 udgraph,并将结果应用于通勤邻接矩阵 ud,以研究 ud两个不相交图之间的互连矩阵编码链接与两个图的 uddisjoint并集的邻接矩阵互换。预期的应用将用于相互依赖的网络的设计和分析中。

著录项

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号