首页> 外文OA文献 >Design of 3D-Printable Conductive Composites for 3D-Printed Battery
【2h】

Design of 3D-Printable Conductive Composites for 3D-Printed Battery

机译:用于3D打印电池的3D可打印导电复合材料的设计

摘要

In this research, a biocompatible nano-composite is designed for the application of 3D printed battery. The nano-composite paste is composed of an electrically conductive silver nanowire (AgNW) filler within a thixotropic carboxymethyl cellulose (CMC) matrix. Experimental demonstration and computational simulations on nano-composites with various filler fractions are performed to find the electrical percolation threshold of the nano-composite. The percolation threshold as 0.7 vol. % of AgNWs is predicted by computer simulations as well as by experiments. Also, maximum electronic conductivity is obtained as 1.19×102 S/cm from a nano-composite with 1.9 vol. % of AgNWs. Also, newly designed paste 3D printing apparatus is built by integrating a commercially available delta 3D printer with a paste extruder.Finally, the 3D printable battery facilitated by the conductive composite is demonstrated. Cathode and anode materials are formulated by addition of cathode and anode active materials to the nano-composite of AgNW and CMC. Rheology study of the cathode and anode paste is carried out and thixotropic (shear-thinning) behavior is observed which is an essential characteristic of the 3D printable paste [1], [2]. Lastly, the performance demonstration on the fabricated 3D printed battery is carried out. The 3D printable conductive paste is expected to contribute in additive manufacturing process for printable electronics.
机译:在这项研究中,为3D打印电池的应用设计了一种生物相容性纳米复合材料。纳米复合浆料由触变性羧甲基纤维素(CMC)基质中的导电银纳米线(AgNW)填料组成。对具有不同填料分数的纳米复合材料进行了实验演示和计算模拟,以发现纳米复合材料的电渗流阈值。渗滤阈值为0.7vol。 AgNWs的百分比可通过计算机模拟以及实验来预测。另外,由1.9vol。%的纳米复合材料获得的最大电子电导率为1.19×102S / cm。 AgNW的百分比。此外,通过将市售的增量式3D打印机与糊料挤出机集成在一起,构建了新设计的糊料3D打印设备。最后,说明了由导电复合材料促进的3D可打印电池。通过将阴极和阳极活性材料添加到AgNW和CMC的纳米复合材料中来配制阴极和阳极材料。进行了正极和负极浆料的流变学研究,并观察到触变(变稀)行为,这是3D可印刷浆料的基本特征[1],[2]。最后,进行了3​​D打印电池的性能演示。预计3D可印刷导电胶将有助于可印刷电子产品的增材制造过程。

著录项

  • 作者

    Park Jae Sung;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号