首页> 外文OA文献 >Improving Recommender Systems with Rich Side Information
【2h】

Improving Recommender Systems with Rich Side Information

机译:利用丰富的辅助信息改进推荐系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recommender systems have become extremely popular in recent years since they can provide personalized information to user from a large amount of data, which is typically noisy and hard to exploit. Traditional approaches mainly leverage the user-item rating matrix forrecommendation. Beyond the rating matrix, however, there exists rich side information in recommender systems, which is a good source to improve the performance of rating prediction. In this thesis, we studied three types of side information (i.e., content, temporal, spatial), pointed out some open issues that are unsolved by the existing models and proposed our solutions in these areas.We incorporate side information with some domain knowledge to improve the recommender systems. In recommendation with content information, we proposed a feature-centric model to analyze the feature-level preferences instead of the item-level preferences, thus, make prediction according to feature-level preferences. We further proposed a recommendation by blending content and attributes in heterogeneous networks. In recommendation with temporal information, we proposed temporal matrix factorization to model the user’s interest shift over time; such changes are essential for developing accurate recommender systems. In recommendation with spatial information, we proposed a cross-region collaborative filtering method to deal with the POI (Point of Interest) recommendation when the user travels to a new place; in this model, the long-term and short-term preferences are considered respectively. All these models are evaluated in real life data sets with the state-of-the-art methods.
机译:推荐器系统近年来变得非常流行,因为它们可以从大量数据中向用户提供个性化信息,这些数据通常比较嘈杂并且难以利用。传统方法主要利用用户项评级矩阵进行推荐。但是,除了等级矩阵之外,推荐系统中还存在丰富的辅助信息,这是提高等级预测性能的良好来源。在本文中,我们研究了三种类型的辅助信息(即内容,时间,空间),指出了现有模型无法解决的一些开放性问题,并在这些领域提出了解决方案。改善推荐系统。在内容信息的推荐中,我们提出了一个以功能为中心的模型来分析功能级别的偏好,而不是项目级别的偏好,从而根据功能级别的偏好进行预测。我们通过混合异构网络中的内容和属性进一步提出了一项建议。在建议使用时间信息时,我们提出了时间矩阵分解以对用户的兴趣随时间推移进行建模。此类更改对于开发准确的推荐系统至关重要。在具有空间信息的推荐中,我们提出了一种跨区域协作过滤方法来处理用户到新地点时的POI(兴趣点)推荐;在该模型中,分别考虑了长期和短期偏好。所有这些模型均使用最新方法在现实生活的数据集中进行评估。

著录项

  • 作者

    Zhang Chenyi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号