首页> 外文OA文献 >Scoring and estimating score precision using multidimensional IRT
【2h】

Scoring and estimating score precision using multidimensional IRT

机译:使用多维IRT计分和估计分数精度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ultimate goal of measurement is to produce a score by which individuals can be assessed and differentiated. Item response theory (IRT) modeling views responses to test items as indicators of a respondent’s standing on some underlying psychological attributes (van der Linden & Hambleton, 1997) – we often call them latent traits – and devises special algorithms for estimating this standing. This chapter gives an overview of methods for estimating person attribute scores using one-dimensional and multi-dimensional IRT models, focusing on those that are particularly useful with patient-reported outcome (PRO) measures. udTo be useful in applications, a test score has to approximate the latent trait well, and importantly, the precision level must be known in order to produce information for decision-making purposes. Unlike classical test theory (CTT), which assumes the precision with which a test measures the same for all trait levels, IRT methods assess the precision with which a test measures at different trait levels. In the context of patient-reported outcomes measurement, this enables assessment of the measurement precision for an individual patient. Knowing error bands around the patient’s score is important for informing clinical judgments, such as deciding upon significance of any change, for instance in response to treatment etc. (Reise & Haviland, 2005). At the same time, summary indices are often needed to summarize the overall precision of measurement in a research sample, population group, or in the population as a whole. Much of this chapter is devoted to methods for estimating measurement precision, including the score-dependent standard error of measurement and appropriate sample-level or population-level marginal reliability coefficients.udPatient-reported outcome measures often capture several related constructs, the feature that may make the use of multi-dimensional IRT models appropriate and beneficial (Gibbons, Immekus & Bock, 2007). Several such models are described, including a model with multiple correlated constructs, a model where multiple constructs are underlain by a general common factor (second-order model), and a model where each item is influenced by one general and one group factor (bifactor model). To make the use of these models more easily accessible for applied researchers, we provide specialized formulae for computing test information, standard errors and reliability. We show how to translate a multitude of numbers and graphs conditioned on several dimensions into easy-to-use indices that can be understood by applied researchers and test users alike. All described methods and techniques are illustrated with a single data analysis example involving a popular PRO measure, the 28-item version of the General Health Questionnaire (GHQ28; Goldberg & Williams, 1988), completed in mid-life by a large community sample as a part of a major UK cohort study.
机译:测量的最终目标是产生一个分数,通过该分数可以评估和区分个人。项目反应理论(IRT)建模将测试对象的反应视为被调查者在某些潜在心理属性上的地位的指标(van der Linden&Hambleton,1997)–我们经常称其为潜在特征–并设计了特殊算法来估计这一状况。本章概述了使用一维和多维IRT模型估算人员属性得分的方法,重点介绍了对患者报告结果(PRO)度量特别有用的方法。 ud为了在应用中有用,测试分数必须很好地近似潜在特征,而且重要的是,必须知道精确度水平,才能产生用于决策目的的信息。与经典测试理论(CTT)不同,经典测试理论假定所有特质水平的测试精度都相同,IRT方法会评估不同特质水平的测试精度。在患者报告结果测量的情况下,这可以评估单个患者的测量精度。了解患者评分的误差带对于告知临床判断非常重要,例如确定任何变化的重要性,例如对治疗的反应等(Reise&Haviland,2005年)。同时,通常需要汇总索引来总结研究样本,人群或整个人群中总体测量精度。本章的大部分内容专门介绍了估计测量精度的方法,包括与得分相关的标准测量误差以及适当的样本水平或总体水平的边际可靠性系数。 ud患者报告的结果测量通常捕获了几种相关的结构,其特点是可能会适当和有益地使用多维IRT模型(Gibbons,Immekus和Bock,2007年)。描述了几种这样的模型,包括具有多个相关构造的模型,一个模型在其中多个构造受通用公因子影响的模型(二阶模型)以及一种模型,其中每个项目都受到一个通用和一个群因子(双因子)的影响模型)。为了使应用研究人员更容易使用这些模型,我们提供了专门的公式来计算测试信息,标准误差和可靠性。我们展示了如何将以数个维度为条件的大量数字和图形转换为易于使用的索引,这些索引可以被应用研究人员和测试用户理解。所有描述的方法和技术都通过一个数据分析示例进行了说明,该示例涉及一种流行的PRO措施,即28项版本的“一般健康状况调查表”(GHQ28; Goldberg&Williams,1988年),在中年由一个大型社区样本完成。英国一项重要的队列研究的一部分。

著录项

  • 作者

    Brown Anna; Croudace Tim J;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号