首页> 外文OA文献 >Evaluating the performance of PC-ANN for the estimation of rice nitrogen concentration from canopy hyperspectral reflectance
【2h】

Evaluating the performance of PC-ANN for the estimation of rice nitrogen concentration from canopy hyperspectral reflectance

机译:通过冠层高光谱反射率评估PC-ANN估算稻米氮浓度的性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, a wide range of leaf nitrogen concentration levels was established in field-grown rice with the application of three fertilizer levels. Hyperspectral reflectance data of the rice canopy through rice whole growth stages were acquired over the 350 nm to 2500 nm range. Comparisons of prediction power of two statistical methods (linear regression technique (LR) and artificial neural network (ANN)), for rice N estimation (nitrogen concentration, mg nitrogen g(-1) leaf dry weight) were performed using two different input variables (nitrogen sensitive hyperspectral reflectance and principal component scores). The results indicted very good agreement between the observed and the predicted N with all model methods, which was especially true for the PC-ANN model (artificial neural network based on principal component scores), with an RMSE 0.347 and REP 13.14%. Compared to the LR algorithm, the ANN increased accuracy by lowering the RMSE by 17.6% and 25.8% for models based on spectral reflectance and PCs, respectively.
机译:在这项研究中,通过施用三种肥料水平,在田间种植的水稻中建立了广泛的叶氮浓度水平。在350 nm至2500 nm范围内获取了水稻冠层在整个水稻生长阶段的高光谱反射数据。使用两个不同的输入变量,对两种统计方法(线性回归技术(LR)和人工神经网络(ANN))的水稻氮素估算(氮浓度,mg氮g(-1)叶干重)的预测能力进行了比较。 (氮敏感的高光谱反射率和主成分评分)。结果表明,使用所有模型方法,观察到的N和预测的N之间都有很好的一致性,对于PC-ANN模型(基于主成分评分的人工神经网络)尤其如此,RMSE为0.347,REP为13.14%。与LR算法相比,对于基于光谱反射率和PC的模型,ANN分别将RMSE降低了17.6%和25.8%,从而提高了准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号